Numerical techniques applied to the investigation of the dynamic response of a four layer diode

Ronald John Schmitz
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Electrical and Electronics Commons

Recommended Citation

Schmitz, Ronald John, "Numerical techniques applied to the investigation of the dynamic response of a four layer diode " (1967).
Retrospective Theses and Dissertations. 3212.
https://lib.dr.iastate.edu/rtd/3212

This dissertation has been microfilmed exactly as received $\quad 68=5983$
 SCHMITZ, Ronald Johrr, 1934NUMERICAL TECHNIQUES APPLIED TO THE INVESTIGATION OF THE DYNAMIC RESPONSE OF A FOUR LAYER DIODE.
 Iowa State University, Ph.D., 1967
 Engineering, electrical

University Microfilms, Inc., Ann Arbor, Michigan
NUMERICAL TECHNIQUES APPIIED TO
THE INVESTIGATION OF THE DYNAMIC RESPONSE
OF A FOUR LAYER DIODE
by
Ronald John Schmitz
A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of
The Requirements for the Degree of
DOCTOR OF PHILOSOPHY
Major Subject: Electrical Engineering
Approved:
Signature was redacted for privacy
In Charge of Major WorkSignature was redacted for privacy.Head of Major Department

Signature was redacted for privacy.
Dean of Gradtate College
Iowa State University
Of Science and TechnologyAmes, Iowa

TABLE OF CONTENTS
Page
INTRODUCTION 1
Theory of Operation 1
Lateral Effects in Gated $\mathrm{P}-\mathrm{N}-\mathrm{P}-\mathrm{N}$ Devices 8
Turn-On and Turn-Off Gain 10
Structures 10
Spread of "On" Region 14
DESCRIPTION OF THE PROPOSED MATHEMATICAL MODEL 15
Factors Effecting Gate Controlled Devices 15
Overall View of the Problem 17
Base Bias Calculations 26
Continuity Equation Solution 36
PERFORMANCE OF THE MATHEMATICAL MODEL 56
Comparison to Experimental Results 58
SUMMARY AND CONCLUSIONS 68
IITERATURE CITED 70
ACKNOWLEDGMENTS 72
APPENDIX A: DEFINITION OF COMPUTER PROGRAM VARIABLES 73
APPENDIX B: COMPUTER PROGRAM 79

INTRODUCTION

Active devices that possess inherent negative resistance hold an important place in the field of electronics. A device that has this characteristic will ordinarily have two stable states and will be able to be switched from one to the other. There has been a good deal of work done on a variety of two and three terminal $p-n-p-n$ semiconductor devices that fall into the above category. The three terminal device that is controllable for both turn-on and turn-off by means of gate current I_{g} will be the type of device that is to be considered here. This type of device has various names such as thyristor, GTO (gate turn-off), and GCS (gate controlled switch) depending on the reference or manufacturer being considered. The purpose of this thesis will be to present a mathematical model, using numerical techniques to set up a computer solution, of the gate controllable device that will permit the exploration of the behavior of the device during the time of switching from one stable state to the other and that will allow exploration of the dependence of this behavior on the device geometry and fabrication. The computer model results will be compared to the actual behavior of a commercial device.

Theory of Operation

Some of the basic concepts involved in the two terminal device as shown in Figure la are presented by Moll et al. (17). This type of device is fairly amenable to analysis and has been given a good deal of attention in the literature. Mackintosh (14) and Aldrich and Holonyak (1)
have discussed some aspects of the three terminal version of the p-n-p-n switch as shown in Figure 1 lb . As pointed out in these papers, this type device usually has transverse base currents and so will present a twospace dimensional problem which will be more difficult to handle than the two terminal case.

The process of switching from the "off" state to the "on" state for the two terminal device is ordinarily done by increasing the value of anode-to-cathode voltage to a point where avalanching occurs across the center junction of the device. To switch from the "on" state to the "off" state, the device current I is interrupted in some manner until the change has been accomplished.

The three terminal device as shown in Figure 1 lb can be turned on by applying a current pulse I_{g} of appropriate polarity to the gate terminal. Some three terminal devices must be turned off by interruption of the device current I_{A} by some manner while other three terminal devices can be turned off by a current pulse I_{g} of the appropriate polarity at the gate terminal.

Referring to Figures $1 a$ and $1 b$ the two outer regions both act as emitters so that the outer junctions will be referred to as $J_{E 1}$ and $J_{E 2}$. The center junction J_{C} acts as a collector and the two inner regions both act as base regions. The P_{1} region will be referred to as base 1 and the N_{2} region as base 2. The static fraction of the emitter current at emitter $J_{E 1}$ into base 1 that is collected at J_{C} will be called α_{1}. The static fraction of the emitter current at emitter $J_{E 2}$ into base 2 that is collected at J_{C} will be called α_{2}. When a low value
of voltage V of polarity shown in Figures $l a$ and $I b$ is applied, the junctions $J_{E 1}$ and $J_{E 2}$ will be forward biased, and J_{C} will be reverse biased. This corresponds to the high impedance, or "off", state shown as Region 1 in Figure 2.

For the two terminal device of Figure 1 the device current I will be

$$
\begin{equation*}
I=\alpha_{1} I+\alpha_{2} I+I_{C O} \tag{1}
\end{equation*}
$$

where $I_{C O}$ is the collector junction saturation current. If this equation is solved for. I the result is

$$
\begin{equation*}
I=\frac{I_{C O}}{I-\alpha_{1}-\alpha_{2}} \tag{2}
\end{equation*}
$$

Thus if $I_{C O}$ is small and $\left(\alpha_{1} \div \alpha_{2}\right)$ is small, the current I will be small, so that the "off" state corresponds to the condition

$$
\begin{equation*}
\alpha_{1}+\alpha_{2}<1 \tag{3}
\end{equation*}
$$

If the values of α_{1} and α_{2} increase for some reason, and the condition

$$
\begin{equation*}
\alpha_{1}+\alpha_{2} \geq 1 \tag{4}
\end{equation*}
$$

exists, then Equation 2 is no longer valid and the device current is limited only by the external circuit. In order for the collector current to be limited to the value of current flowing in the external circuit, the center junction becomes forward biased thereby emitting electrons and holes back into the base layers causing the base layers to become saturated with minority carriers. Under the condition of Equation 4, the device has all three junctions forward biased and is now in its low impedance, or "on" state corresponding to Region 2 of Figure 2 and will remain in this state until some external signal is applied to force a change. . It has been shown that the alpha value increases with emitter

Figure I. Four layer devices
(a) Two terminal device and
(b) three terminal device

Figure 2. Idealized V-I curve of a p-n-p-n device
current as discussed by Moll et al. (17), Aldrich and Holonyak (2), Jonscher (1la), and others. Figure 3 gives the approximate behavior of the alphas for a four layer device under the assumption that the maximum value of α_{1} is near unity while the maximum value of α_{2} is considerably less. At very low values of emitter current alpha is very small because much of the current across the emitter junction is caused by recombination taking place inside the space depletion region of the junction causing the emitter injection efficiency to be low for low values of emitter current according to $S a h$ et $a l$. (22b). As the emitter current increases the recombination centers in the space depletion region tend to become saturated so that diffusion of carriers across the region increases causing the emitter injection efficiency, and thus alpha, to increase. The value of alpha will tend to drop off somewhat at high values of emitter current due to conductivity modulation of the base region causing the emitter efficiency, and thus alpha, to decrease. To turn on the two teminal device of Figure la, the voltage V is increased to a level where avalanche breakdown at J_{C} causes an increase in the emitter currents causing α_{1} and α_{2} to increase. If the condition of Equation 4 is reached, the device will change from the high impedance to the low impedance state as J_{C} changes from a reverse to a forward bias. The device will remain in this low impedance state even if V is no longer held at the switching level. To return the device to the "off" state, the usual method of turning off the two terminal device is to reduce the device current below a certain minimum value, called the holding current, causing the device to change from the low impedance to

Figure 3. Approximate alpha behavior for a $p-n-p-n$ device for (a) the high alpha base and (b) the low alpha base
the high impedance state as the center junction goes back to the reverse bias condition.

The behavior of the three terminal device can be discussed in a similar way. The anode current is

$$
\begin{equation*}
I_{A}=\alpha_{2} I_{A}+\alpha_{I}\left(I_{A}+I_{g}\right)+I_{C O} \tag{5}
\end{equation*}
$$

If this equation is solved for I_{A} the result is

$$
\begin{equation*}
I_{A}=\frac{\alpha_{I} I_{g}+I_{C O}}{I-\alpha_{I}-\alpha_{2}} \tag{6}
\end{equation*}
$$

where $I_{C O}$ is again the collector junction saturation current. Again, if $I_{g}, I_{C O}$, and $\left(\alpha_{1}+\alpha_{2}\right)$ are small, I_{A} will be small and the device will be in the "off" state. If $\left(\alpha_{1}+\alpha_{2}\right) \geq 1$ now becomes the case, the device current will be limited by the external circuit and the device will be "on". For the three terminal device switching can be accomplished by increasing the emitter currents, and hence the alpha sum, by supplying a gate current at one of the bases. For turn-off, if the three terminal device is properly designed, charge can be withdrawn from the gate base which will reduce the emitter currents and the alpha sum causing the center junction to return to a reverse bias, high impedance condition when the two bases come out of saturation.

The definition of turnon time will be taken as the length of time from the application of a gate pulse until saturation of the base regions occur which will be when the device current begins to be limited by the external circuit. The turn-off time will be the length of time from when the control pulse is applied until the device current is small enough so that the device will again act as a high impedance device with
the controi pulse ended.

Lateral Effects in Gated P-N-P-N Devices
Fletcher (5) has pointed out an effect in power transistors that must also be considered in devices with a gated base region. Because of the narrow base region and the finite resistivity of the base layer of a device such as in shown in Figure $1 b$, the base current flowing in a transverse direction in the base region to supply the necessary charge for volume recombination, junction capacitance charging, losses due to emitter efficiencies less than unity, and any other necessary charge will cause transverse voltage differences along the base region. Thus when base current is being supplied to base 1 to turn the device on, the injected carriers along the emitter. junction will be a maximum nearest the base lead and will fall off due to the drop in emitter forward bias caused by the ohmic voltage gradient along the base. Thus for a narrow base region with relatively high resistivity, the effective emitter area will be limited to a region close to the gate contact. Figure 4 illustrates the case during the time the device is being turned on. The turn-off operation is also complicated by the transverse base resistance. For turn-off, the entire emitting area must essentially be turned off when withdrawal of charge through the gate terminal is stopped or the device will still be in the low impedance condition. With charge being removed from the gate, there will be an ohmic voltage gradient that will cause the emitter voltage forward bias to be lowest next to the gate terminal and higher at points more remote from the gate. Figure 5 illustrates the case for charge being withdrawn from the base.

Figure 4. Fall off of injected emitter current density as a function of transverse distance along base. Charge is being supplied to gate at $x=0$. Base edges are at 0 and at w.

Figure 5. Increase in injected emitter current density as a function of transverse distance along base. Charge is being withdrawn from gate at $x=0$. Base edges are at 0 and at w.

Turn-On and Turn-Off Gain

Turn-on gain is the ratio of load current after the device is on to the necessary value of gate current to turn it on. Likewise, turn-off gain is the ratio of the load current before turn-off is started to the gate current necessary to cause the device to turn off. Goldey et al. (9) have discussed some of the factors influencing gain. In order for the gate current to have maximum effect during turn-on, the alpha of the gated base should be large so that a given gate current will cause a large increase in emitter currents which in turn will increase the alpha sum causing turn-on if said increase is great enough. Once the device is "on", the center junction limits the device current and the alpha sum to approximately unity. If the device current were not limited, the alpha sum would approach some maximum value. The amount that this maximum value of the alpha sum exceeds unity essentially determines how much excess minority carrier charge is stored in the base regions. To keep this excess stored charge at a minimum, the alpha of the ungated base should be kept low. Thus the physical design of the device should be such as to give a high α_{1} for the gated base, and a low α_{2} for the ungated base.

Structures

A necessary condition for the operation of the $p-n-p-n$ semiconductor device is the variable alpha sum. This is true for both the two-terminal and the three-terminal device. The avalanche process at junction J_{C} is the means for increasing the alpha sum in the case of the two-terminal device. The consideration of turn-off gain for the gated three terminal
devices of Figures 6 and 7 puts the additional boundary condition of wanting the gated base alpha to be high and the ungated base alpha to be low. Consideration must be given to how the magnitude and variation in alpha can be controlled.

The quantity α_{1} of the gated base is desired to be fairly high. The design of the device for this purpose is done using well known techniques, e.g. narrow base width, high injection efficiency, low volume recombination rate, etc. The controlled low α_{2} structure can be achieved by reducing either the emitter efficiency γ_{2} of $J_{E 2}$ or the transport factor β_{2} of base 2 to low values. A general discussion of the ideas involved here are given in Gentry et al. (6).

If the transport factor β_{2} of a device such as that shown in Figure 6 is to be controlled, this may be done by employing a wide base region for base 2. The same purpose would be accomplished if the lifetime were lowered by having a high density of recombination centers. As injection levels increase, and saturation of recombination centers enter into consideration, the lifetime would increase and tend to raise α_{2}. This effect might not be desirable if α_{2} is to be kept at a low value to minimize saturation minority-carrier densities. Still another way that the minority-carrier transport can be varied is by an electric field in a wide base region due to majority carrier current flow. This effect is dependent on device current and thus gives a variable α_{2}. This method of control is discussed by Lesk (12), Aldrich and Holonyak (I), and Gentry et al. (6).

If the emitter efficiency of $J_{E 2}$ is to be the controlling variable,

Figure 6. Low α_{2} is controlled by causing emitter efficiency or transport factor of base 2 to be low

Figure 7. Low α_{2} is controlled jy shorting emitter 2 and base 2 together giving a variable emitter injection efficiency
there are at least two techniques that will allow this. The absolute magnitude of γ_{2} may be restricted to low values by designing emitter 2 to have a high sheet resistivity with respect to the value of the sheet resistivity of base 2. The value of γ as shown in Goldey et al. (9) is

$$
\begin{equation*}
\gamma \approx \frac{R_{b}}{R_{e}+R_{b}} \tag{7}
\end{equation*}
$$

where R_{b} is the sheet resistance of the base layer and R_{e} is the sheet resistance of the emitter layer. To obtain a low γ the quantity $R_{e} \gg R_{b}$. If the emitter layer is made very thin and highly doped giving a high R_{e}, conductivity modulation of the emitter will not occur. If conductivity modulation occurred an increase in emitter injection efficiency would occur and cause a corresponding increase in α_{2}. Another way to gain the variability and control of size for γ_{2} is by using a shorting contact to short together emitter 2 and base 2. Aldrich and Holonyak (2) discussed this technique in some detail and further discussion of this idea can be found in Gentry et al. (6, 7). As device current begins to flow in this type of device, as in Figure 7, there is a transverse flow of charge in base 2 under the shorted emitter toward the shorting contact causing a transverse voltage along base 2 which will forward bias the junction $J_{E 2}$ and cause injection of holes into base 2. At low device current, the junction $J_{E 2}$ is nearly inoperative as an emitter so that γ_{2} is very nearly zero. As device current increases the forward bias on $J_{E 2}$ will increase and the emitter will begin injecting more charge with a corresponding increase in γ_{2}. If γ_{2} increases sufficiently to cause the alpha sum to reach unity, the device
will switch to the low impedance, or "on", state. For turn-off, the preceding routine is reversed. If enough gate charge is witharawn so that the transverse voltage drop in base 2 is insufficient to maintain heavy injection at $J_{E 2}, \gamma_{2}$ will decrease enough to cause a drop in the alpha sum and the device will switch to the "off" state. The relative widths of the emitter layers are important and will effect the sizes of holding current. and gate current for turn-on or turn-off. It should be especially noted that the shorting contact introduces further very important transverse considerations.

Spread of "On" Region

Because of the transverse biasing effect in a gated four-layer diode as discussed in the section on lateral effects, the region of the $p-n-p-n$ switch that will be "on" first will be that part of the emitter closest to the gate terminal. If the device anode current is greater than the holding current when the gate current is discontinued after local turn-on has taken place, the device will remain on and there will be a gradual spreading of the "on" region due to the lateral diffusion of carriers in the base region so that the "on" state will spread. This phenomenon has been discussed by Longini and Melngailis (13). They have discussed this in terms of a "velocity of propagation" of the "on" state. Dodson (4a) did a good deal of experimental work on devices of the general form shown in Figure 6 that demonstrated how the "on" state spreads after local turn-on has taken place next to the gate region.

DESCRIPTION OF THE PROPOSED MATHEMATICAL MODEL

The two types of devices that will be considered in this proposed mathematical model will be the devices shown in Figures 5 and 7. Both these devices have transverse base currents that strongly influence their behavior. The controlling quantity in both devices will be considered to be the gate current I_{g} for both turn-on and turn-off. The voltage applied across the device will be assumed to be less than that required for avalanching to become important at junction J_{C}.

Factors Effecting Gate Controlled Devices
The gated $p-n-p-n$ switch has high level effects that arise due to the base biasing effects causing the emitter current density at the gated emitter to be quite high at regions near the gate and to fall off rapidly at more remote parts of the emitter. The collector junction J_{C} becomes forward biased in the "on" state and this also must be accounted for. For devices of the sort shown in Figures 6 and 7 with α_{2} of the ungated base being designed to have a low value with a relatively wide base region of high resistivity, electric fields due to majority carrier current flow may also be important.

The results of the considerations entering into the design of the devices of Figures 6 and 7 that will be important in the considerations for a mathematical model are:

1. Transverse voltage gradient along base 1 and base 2 due to transverse current flow
2. Two-dimensional minority carricr concentration in base 1 and base 2 due to transverse base currents
3. Injected minority carrier concentration may be large enough to cause conductivity modulation to occur
4. Emitter injection efficiency may be low enough in some cases so that carrier injection into the emitter may become important
5. Collector junction J_{C} becomes forward biased as the device turns on
6. Electric field due to ohmic voltage drop in the low wide base region may become important.

Some of these factors will be more important than others. The first of these factors has been discussed in the sections on lateral effects and on structures. This factor is very important and certainly must be included. The importance of the first factor leads directly to the reason why factor 2 must be included. Factor 3 is important since some parts of the gated $p-n-p-n$ will be conducting heavily and will be turned on while other parts will be conducting very lightly. If the injected minority carrier concentration becomes sufficiently high, the transverse voltage along the effected base would be correspondingly changed and the emitter injection efficiency would change due to its dependence on the relative size of the base and emitter sheet resistivities as discussed in the section on turn-on and turn-off gain. Factor 4 must be considered since low emitter injection efficiency will result in the injection of charge from the base into the emitter and will increase the amount of base current necessary to drive the effected base. Factor 5 must be

Abstract

taken into consideration because as the four-layer device changes from a high impedance to a low impedance state the center junction J_{C} must change from a reverse to a forward bias in order to limit the device current. This points out that the criteria for the device being "on" depends on whether or not the center junction is reverse biased. The final factor is important because an electric field can cause more charge to be transported across the base thus effectively varying the alpha of the corresponding base and also can effect the transit time of carriers on base 2. Since the four-layer device is dependent on changing values of alphas for its behavior, this electric field must be considered.

Overall View of the Problem

The analysis of the devices of Figures 6 and 7 is complicated by their two-dimensional nature arising from transverse effects caused by variation in the emitter junction voltage from the transverse base current flow through the transverse base resistance and from transverse effects caused by the shorting contact of the device of Figure 7. Further complications arise due to the way the base regions are coupled so that they furnish drive to each other. Other factors discussed in the preceding section also cause complications. All these considerations make it extremely difficult, if not impossible, to get any sort of an exact mathematical solution. If a reasonably accurate analysis is desired, it becomes necessary to go to numerical techniques. The necessary equations will now be obtained and discussed, and then the overall approach to the use of these equations for the analysis of the problem will be discussed.

Equations needed for the solution
The basic relation that governs the flow of the charged particles through semiconductor material is the equation of continuity. This equation completely describes the behavior of either electrons or holes in semiconductor material for both time and space variations. If an incremental volume dxdydz centered at (x, y, z) in a cartesian coordinate system is considered within the semiconductor material, the continuity equation requires that the time rate of increase in the number of carriers within this incremental volume is equal to the excess of generation over recombination plus the net inward flow of carriers across the surface of the volume. The method used here for the development of the continuity equation parallels that of Shockley (23). If an N -type material is considered, the time rate of change of holes in the incremental volume is

$$
\begin{equation*}
\frac{\partial p}{\partial t} \mathrm{dxdyd} z \tag{8}
\end{equation*}
$$

The excess rate of generation over recombination in the incremental volume is

$$
\begin{equation*}
(g-r) d x d y d z \tag{9}
\end{equation*}
$$

where g is the net rate of generation of holes per unit volume and r is the net rate of recombination of holes per unit volume. The current density in the x-direction and into the middle of the dydz face of the volume is

$$
\begin{equation*}
i_{p x}(x, y, z)-\frac{\partial i_{p x}(x, y, z)}{\partial x} \frac{d x}{2} \tag{10}
\end{equation*}
$$

The current flow out of the middle of the other dydz face will be of
exactly the same form with the negative sign replaced by a positive sign. Thus the net inward flow of holes for the dydz faces will be

$$
\begin{align*}
-\left[\frac { 1 } { q } \left(i_{p x}(x, y, z)\right.\right. & \left.-\frac{\partial i_{p x}(x, y, z)}{\partial x} \frac{d x}{2}\right)-\frac{1}{q}\left(i_{p x}(x, y, z)\right. \\
& \left.\left.+\frac{\partial i_{p x}(x, y, z)}{\partial x} \frac{d x}{2}\right)\right] d y d z=-\frac{1}{q} \frac{\partial i_{p x}(x, y, z)}{\partial x} d x d y d z \tag{11}
\end{align*}
$$

The net inward flow of holes for the dxdy and dxdz faces can also be found in an exactly similar manner resulting in an equation for the net inward flow of holes being

$$
\begin{equation*}
-\frac{1}{q}\left(\frac{\partial i_{p x}}{\partial x}+\frac{\partial i_{p y}}{\partial y}+\frac{\partial i_{p z}}{\partial z}\right) d x d y d z=-\frac{1}{q} \vec{\nabla} \cdot \vec{i}_{p} d x d y d z \tag{12}
\end{equation*}
$$

Again referring to Shockley (23), if the assumption is made that the number of excess holes decay with the characteristic lifetime T_{p}, the average lifetime of a hole before recombination with an electron, the following relation is obtained:

$$
\begin{equation*}
(g-r) d x d y d z=\frac{p_{n}-p^{\prime}}{T_{p}} d x d y d z=-\frac{p}{\tau_{p}} d x d y d z \tag{13}
\end{equation*}
$$

Here p_{n} is the equilibrium value of concentration, p^{\prime} is the total concentration, and p is the excess concentration of the holes in the N-type material. The complete continuity equation obtained by putting these results together after noting that the dxdydz dependence will cancel out of each term gives

$$
\begin{equation*}
\frac{\partial p}{\partial t}=-\frac{p}{T_{p}}-\frac{1}{q} \vec{\nabla} \cdot \vec{i}_{p} \tag{14}
\end{equation*}
$$

After a similar development is gone through for P-type material the
resulting equation for the minority electron concentration is

$$
\begin{equation*}
\frac{\partial n}{\partial t}=-\frac{n}{\tau_{n}}+\frac{1}{q} \vec{\nabla} \cdot \vec{i}_{n} \tag{15}
\end{equation*}
$$

The difference in sign on the divergence term results from the fact that, due to the opposite sign on the charge of holes and electrons, hole diffusion current flows in the direction of decreasing density while electron diffusion current flows in the direction of increasing density.

In order to have the continuity equation strictly in terms of the minority carrier concentration, the relation between current density and this concentration is needed. For current density due to hole flow in an N-type region this relation is

$$
\begin{equation*}
\vec{i}_{p}=q \mu_{\mathrm{p}} \stackrel{\rightharpoonup}{E}\left(p+p_{n}\right)-q D_{p} \vec{\nabla} p \tag{16}
\end{equation*}
$$

The analogous expression for current density due to electron flow in a P-type region is

$$
\begin{equation*}
\vec{i}_{n}=q \mu_{n} \stackrel{\rightharpoonup}{E}\left(n+n_{p}\right) \div q D_{n} \vec{\nabla} n \tag{17}
\end{equation*}
$$

In both Equation 16 and 17 , the first term on the right is a drift current due to an electric field and the second is diffusion due to a density gradient in the excess minority carrier concentration. For these equations, μ_{n} and μ_{p} are mobilities of electrons and holes in $\mathrm{cm}^{2} /$ volt sec, D_{n} and D_{p} are diffusion constants for electrons and holes in $\mathrm{cm}^{2} / \mathrm{sec}, \overrightarrow{\mathrm{E}}$ is the electric field vector, q is the magnitude of the charge on an electron, and \vec{i}_{n} and \vec{i}_{p} are current density vectors.

If one of the continuity equations is to be applied to the analysis of a base region, it is necessary that the relation between the excess
minority carrier density at the edge of the transition region of a junction and the voltage across that junction be known. For an N-type region, the excess hole concentration at the edge of the transition region is

$$
\begin{equation*}
p=p_{n}(\exp (q v / k T)-1) \tag{18}
\end{equation*}
$$

For a P-type region, the excess electron concentration at the edge of the transition region is

$$
\begin{equation*}
n=n_{p}(\exp (q v / k T)-1) \tag{19}
\end{equation*}
$$

Here k is Boltzmann's constant, T is absolute temperature, and v is the voltage across the junction which will be a function of position and time. Equations 18 and 19 give the boundary conditions at both the emitter and the collector for either base region being investigated. Boundary conditions at exposed base surfaces will be determined by assuming a recombination velocity of some value, Middlebrook (15). The equation of this boundary condition for an N-type material expresses the fact that the rate of hole diffusion to the surface is proportional to the excess carrier density at the surface

$$
\begin{equation*}
D_{p} \frac{\partial p}{\partial n}=-S \cdot p \tag{20}
\end{equation*}
$$

where $\frac{\partial p}{\partial_{n}}$ is the component of excess hole density gradient normal to the surface and S is the effective surface recombination velocity with dimensions of $\mathrm{cm} / \mathrm{sec}$.

Organization of the solution

The base current for the ungated base N_{2} will be electrons collected at the center junction from base P_{I}. Conversely, the holes collected at
J_{C} from basc N_{2} will provide drive for the gated base P_{1}. The gated buse can also receive base current from the gate terminal. Since the gated base for either of the devices of Figures 6 or 7 is a P-type region, the gate current I_{g} to base 1 for switching from the high to the low impedance state will consist of positive carriers into the gate terminal. For this reason the gate current for the defined direction shown in Figures 6 and 7 will be a positive pulse of current for turn-on. For turn-off, positive charge will have to be withdrawn from the gated base so that I_{g} will then be a negative pulse of current. The current pulse in both cases will be of finite length. For turn-on or for turn-off, if the magnitude or the time duration of the pulse is insufficient, the device will fail to change its state. The total base current furnished to the gated base will be the sum of the hole current collected at J_{C} from region N_{2} plus the gate current I_{g}.

During turn-on, the base current for either base must supply several needs. For the emitter voltage to increase to a forward bias value, charge must be furnished to the emitter junction capacitance. At the start of turn-on the center junction is reverse biased, when turn-on has been achieved the center junction is forward biased. The base current must furnish the charge for this change in voltage for J_{C}. The excess of recombination over generation within the base must also be supplied as well as having to supply the majority carrier charge that will offset the increase in minority carriers present as required for space-charge equilibrium as the minority carrier concentration builds up during turn-on.

The current density equations shown as Equations 16 and 17 allow the total device current to be calculated when applied at the center junction J_{C} if the clectric field and the excess minority carrier concentration is known. These equations allow the base current into base 1 and base 2 to be calculated if the value of I_{g} is assumed known. The minority carrier concentration in either base can be found from the continuity equations if the boundary conditions specified as Equations 18, 19, and 20 are known. Equations 18 and 19 allow the excess minority carrier concentration to be calculated if the appropriate junction voltages are known. The circuit of Figure 9 will be used for both turn-on and turn-off. With the device in the "off" state, the center junction J_{C} will be reverse biased with essentially the full voltage E. The two junctions $J_{E 1}$ and $J_{E 2}$ will have a very low forward bias which will be considered to be zero to give a distinct starting point. The device current I_{A} will be essentially the saturation current of the center junction. The initial value of the excess minority carrier concentration in both base 1 and base 2 can then be approximated to get a starting point for the analysis. The starting point of the turn-on process occurs at the time when the positive pulse of current I_{g} as shown in Figure 8 is applied. The continuity equations for base 1 and base 2 will be approximated over as fine a grid as desired with finite difference approximations to Equations 14 and 15 after combining these with Equations 16 and 17 so that the continuity equations are wholly in terms of excess minority carrier concentrations. The behavior of the device can now be analyzed for the turn-on period by stepping forward in time using a finite time increment

Figure 8. Values of I_{g} are (a) positive for turn-on and (b) negative for turn-of

Figure 9. Assumed circuit for transient analysis of device
and going through the following steps:

1. Calculate currents at junction J_{C} to get total base drives into either base 1 or base 2 at one particular point in time. Base 1 also has I_{g} supplying drive current.
2. To step forward a specified time increment, the base drive current is assumed constant over the time increment thus giving the total charge supplied to the base during this time step. Knowing the total charge supplied and the junction voltages at the beginning of the time step will allow calculation of the new junction voltages at the end of the time step by consideration of the necessary charge needed for capacitance charging, volume recombination etc., and comparing it to the actual amount supplied. These junction voltages are calculated only at discrete points.
3. The finite difference form of the continuity equations will be solved by an iterative technique to get the values of the excess minority carrier concentration at the end of the time step at the intersections of the specified mesh.
4. Return to step 1 and step forward another increment in time. Continue until solution is completed.

The starting values of junction voltages, minority carrier concentration, and device currents for the beginning of the turn-off period will be known from the end results of the turn-on calculations just described. The beginning of turn-off will be at the time when the negative pulse of current I_{g} as shown in Figure 8 is applied. The solution for the
turn-off process follows the same pattern just described. The excess minority carrier concentration of the bases will be decaying during the turn-off process in contrast to turn-on when they will be building up. The logical flow of the computer program used for the modeling of the devices of Figures 6 and 7 is shown in Figure 10. More detail will be gone into on some of the individual blocks shown on this figure.

Base Bias Calculations

More detail will now be gone into in regard to the two blocks shown on Figure 10 for base 1 and base 2 bias calculations. Each of the two base regions is divided into finite sized increments by constructing a network of variably spaced grid lines completely covering both base regions. The device shown is the shorted emitter device of Figure 7 . To avoid overcrowding the sketch only base 1 is shown covered by a grid of horizontal and vertical lines. Exactly the same type of grid is placed over base 2. To simplify the computer program, both regions were made rectangular as shown by the two dashed Iines on Figure ll. The two omitted regions should not have a significant effect on the analysis. The methods used in the various parts of the computer program are nowhere dependent on having exact rectangular regions. The assumed position of gate contact shown on Figure 11 is a consequence of neglecting the resistance of base 1 in regions away from the active base region between the N_{1} and the P_{1} regions. The vertical grid lines divide the horizontal width up into (IM-1) finite increments where $I M$ is a variable integer. The horizontal grid lines divide the vertical height up into (JMT-1) finite increments where JMT is a variable integer. Base 2 has

Figure 10. Flow diagram of overall computer program

Figure 11. Shorted emitter device shown with grid over base 1 and with assumed rectangular base regions for the mathematical analysis
(IM-1) horizontal and (JM2T-1) vertical finite increments. The assuming of base 2 to be a rectangle does not arise for the device of Figure 6 since base 2 is rectangular as it stands.

To enable calculation of the excess minority carrier concentration along $J_{E 1}, J_{C}$, and $J_{E 2}$ from Equations 19 and 20 , the voltages along these junctions must be known at the points defined by the vertical grid lines. As explained in the last section, the drive current for base 1 will consist of hole current collected at J_{C} and whatever gate current is supplied. The drive current for base 2 will consist of electron current collected at the center junction. The equation that expresses the needs that must be supplied for either base by the base current in incremental form is

$$
\begin{equation*}
I_{b}=\frac{Q}{T}+\frac{\Delta V_{c}}{\Delta t} c_{c}+\frac{\Delta V_{e}}{\Delta t} c_{e}+\frac{\Delta Q}{\Delta t}+I_{e} \text { loss } \tag{2I}
\end{equation*}
$$

during a specific time increment Δt. If Δt is chosen sufficiently small then to a good approximation the base current I_{b} being supplied to the base will be constant over that time increment. The term I_{e} loss is due to emitter efficiency being less than unity. The term Q / T is the recombination current. The second and third term represent the amount of current needed to supply the charge to the collector and emitter capacitance to have a change in voltage of ΔV_{c} and ΔV_{e} during the time increment Δt. The term $\Delta Q / \Delta t$ is a measure of the base current needed to supply or remove majority carriers to maintain space-charge equilibrium as the excess minority carriers stored in the bulk base region changes. The capacitance terms C_{c} and C_{e} both are a function of the voltage across their respective junctions. For a step junction, an expression
for capacitance from Gibbons (8) is

$$
\begin{equation*}
C=\frac{C(0)}{(I-v / \phi)^{\frac{3}{2}}} \tag{22}
\end{equation*}
$$

where v is the junction bias voltage, ϕ is the contact potential, and $C(0)$ is the capacitance of the junction for a voltage bias of zero. An expression for $C(0)$ is

$$
\begin{equation*}
c(0)=\frac{\varepsilon A}{I_{1}+I_{2}} \tag{23}
\end{equation*}
$$

where ε is the permittivity, A is the junction area, and I_{1} and I_{2} are the voltage dependent space charge layer widths into the two regions on either side of the junction for a voltage bias of zero. When the transverse variation of junction voltage of v is noted, the junction capacitance is seen to be both time and space dependent.

A slice of either base 1 or 2 is now considered that is Δx wide, where $\Delta \mathrm{x}$ is the distance between two vertical grid lines, and centered on a vertical grid line. To effect a change in the old values of junction voltages at either end of this slice after an incremental step Δt forward in time, this slice of base must have an amount of base current furnished to, or carried away from, it as determined by consideration of Equation 21. In any given slice, there will be a certain amount of base current flow into the slice due to collection at J_{C} from the other base. If the amount of base drive needed for this slice is more than the amount supplied from the second base, the difference must be supplied by a transverse flow through the active base region. If the amount of base drive needed for this slice is less than that
supplied from the second base, the excess must be carried away by a transverse flow through the active base region. In either case the transverse flow of base current will cause a voltage variation along the base region since the transverse resistance of any slice is

$$
\begin{equation*}
R_{T}=\frac{0 \Delta x}{D \cdot B W} \tag{24}
\end{equation*}
$$

where p is the average resistivity of the base, D is the depth of the device into the paper, and BW is the distance from emitter to collector of the base being considered. Transverse flow in base 1 will be very important during turn-on or turn-off when I_{g} is being applied. Base 2 will always have a great deal of transverse flow in the shorted emitter type of device. Even in the non-shorted emitter device, transverse flow in base 2 will occur due to the collection of drive current into base 2 being heaviest at areas under high injection levels for emitter 1 , which occur over an area close to the gate for turn-on and remote from the gate for turn-off.

One other factor of importance here is the conductivity modulation that occurs when and if the minority carrier concentration reaches the same order of magnitude as the doping concentration. When this happens the increase of majority carrier concentration in the base to maintain charge neutrality will be a significant amount with respect to the magnitude of the doping concentration. Using the P-type base as an example, the equation for resistivity assuming low injection levels is

$$
\begin{equation*}
\rho \approx \frac{I}{q \mu_{p} N_{A}} \tag{25}
\end{equation*}
$$

where μ_{p} is the mobility of holes and N_{A} is the acceptor impurity density. The case where the injection level becomes high can be handed by noting that for charge neutrality the minority carrier buildup in the base is matched by an equal buildup of majority carriers to give a new value of resistivity of

$$
\begin{equation*}
\rho^{\prime} \approx \frac{1}{q_{\mu_{p}}\left(n+N_{A}\right)}=\rho \frac{I}{1+n / N_{A}} \tag{26}
\end{equation*}
$$

where n is the excess minority carrier density. It is noted that for $N_{A} \gg n \rho^{\prime}$ and ρ are approximately the same. When this condition is no longer true ρ^{\prime} becomes less than ρ.

The anode-to-cathode voltage across the device can be calculated as the voltage E minus the drop due to the current I_{A} flowing through the resistor $R_{E X}$. The voltage across the center junction can then be calculated by noting that along any chosen longitudinal path through the device the anode-to-cathode voltage must exactly equal the sum of all junction voltages, with proper regard to sign, and all voltage drops due to majority carrier flow through the bulk material of the various regions.

The routine to step forward in time by Δt for a given base assuming that junction voltages and currents across J_{C} at the beginning of the time step are known for that base will be discussed. Before going into the calculation for new bias conditions the values of resistivity are computed for regions where conductivity modulation has become important and the values of junction capacitances are calculated using the known junction voltages that exist at the beginning of the time step. The
values of resistivity and capacitances are assumed to be fixed at these calculated values for the entire incremental time step. What is needed at the end of the time step are the new values of junction voltages and, in the case where the junction voltage across J_{C} has become positive, new values of currents across J_{C}.

To proceed for the step forward in time for base 1, a value of minority carrier concentration is assumed at $i=N I X$, giving a corresponding value of voltage for the emitter junction at this point. The voltage across the center junction is then calculated and the total base drive needed for this slice is found using Equation 24. The starting value of a variable called GIR for base 1 that represents the total transverse current flow at any point is found by taking the sum of the gate drive and the base current into base 1 from the second base for all slices to the right of and including the slice centered at $i=N I X$, and subtracting the base drive needed for all slices to the right of and including the slice centered at $i=$ NIX. This starting value of GIR will be the transverse current flow through the slice centered at $i=$ NIX causing the emitter voltage at (NIX-I) to differ from that at NIX by the product of GIR and R_{T} where R_{T} is for base 1. The base drive needed for the strip centered at (NIX-1) is subtracted from, and the amount of base current into this strip is added to, the running value of GIR. This process is continued slice by slice until the extreme left edge of base 1 is reached. If the value assumed for minority carrier concentration at i = NIX were exactly correct, GIR would be precisely zero after all base strips have been accounted for. The residue of GIR is checked and an
appropriate change is made in the assumed value of minority carricr concentration at $i=$ NIX. The entire process is repeated until the residue of GIR at the left edge of the base region is as small as necessary for the desired accuracy.

When new bias conditions are being calculated for base 2 , the assumed value for the shorted emitter base is the amount of transverse current flowing out from under the shorted emitter while the assumed value for the non-shorted emitter is the value of minority carrier concentration at emitter $J_{E 2}$ at $i=1$. The running variable for the transverse current flow in base 2 at any point is called RUNT. The procedure in base 2 is to start at the left edge and go through analogous calculations slice by slice until the right edge is reached where the residue of RUNT is compared to zero. The assumed value is changed and the calculations are repeated until the residue of RUNT becomes sufficiently small at the right edge.

A general flow chart of the computer program for the bias routine for either base is shown in Figure 12, though in actuality two different programs were used for the two separate bases. Base 2 differs somewhat in that it is assumed that majority carrier flow is great enough due to the low α_{2} so that longitudinal voltage drops, and hence electric fields, must be accounted for. The shorted emitter device will also have transverse electric fields due to the transverse flow of current to the shorting contact.

Figure 12. Flow diagram of base bias computer program

Continuity Equation Solution
After the junction voltages are known for $\left(t_{0}+\Delta t\right)$ the values of excess minority carrier concentration at the junctions at this new time are known. This gives the boundary conditions for the continuity equation for either base at $\left(t_{0}+\Delta t\right)$ and the new values of excess minority carrier concentration at points interior to the base regions can now be found by stepping forward in time to $\left(t_{0}+\Delta t\right)$ for the solution of the continuity equation. Due to the variations in the boundary conditions at the junctions, the continuity equation must be handled in terms of two space dimensions. Because of the many complicating factors such as the two dimensional nature of the problem, conductivity modulation of parts of the base region, etc., the solution of the continuity equation is, for all practical purposes, impossible to obtain in closed form. The continuity equation will be put into finite difference form. A stepwise solution of this finite difference form of the continuity equation will then be used to get numerical approximations to the values of excess minority carrier concentrations at finite points inside the base region being considered.

Survey of iterative techniques

Basically, there are two types of finite difference equations that could be considered for the type of problem discussed here. The first of these is the explicit method in which the value of the variable sought at a particular point at time $\left(t_{0}+\Delta t\right)$ can be expressed completely in terms of known values of the variable at this point and surrounding points at time t_{0}. The solution of this type of difference scheme is
quite simple. The second type of difference equation is the implicit method which results in large systens of simultaneous equations to be solved at each time step which is fairly difficult.

A basic difficulty with the explicit difference method is that when stabilicy criteria for the explicit difference method is applied, O'Brien et ai. (20) has shown that the size of the time step is severely restricted so that an uneconomicaily large number of time steps must be maxe in order to insure stability. This same paper points out that for an implicit difference scheme stability is present without having to restrict the time step. In the book by Varga (24), the material oi Chapter 8 is on parabolic partiai differential equations which is the class in which the continuity equation fits. Several possible approaches to the solution of this type of equation are discussed, and the conclusion is that the most widely used methods in practice are variants of the alternating-direction implicit method mainly because of their inherent unconditional stability.

Alternating-direction implicit method

The alternating-direction implicit method is attributed to Peaceman and Rachiford (21) and requires the line-by-line solution of small sets of simultaneous equations that can be solved in a non-iterative way. Basically the step Δt forward in time is divided into two haif steps each $\Delta t / 2$ in length. First a finite difference form of the partial differential equation is written in which the partials with respect to x are replaced in terms of the unknown values of excess minority carrier concentration at $\left(t_{0}+\Delta t / 2\right)$ and the partials with respect to y are
replaced by known values of excess minority carrier concentration at t_{0}. This results in an expression that is implicit in the x direction for a given row. Each row results in a set of simuitaneous equations that are solved row-by-row over the entire region of interest. Second a finitc difference form of the partial differential equation is written in which the partials with respect to y are replaced in terms of the unknown values of excess minority carrier concentration at ($t_{0}+\Delta t$) and the partials with respect to y. are replaced by known values of excess minority carrier concentration at ($t_{0} \div \Delta t / 2$). This results in an expression that is implicit in the y direction for a given column. Each column results in a set of simultaneous equations that are solved column-by-column over the entire region of interest. These two steps taken together complete one step Δt forward in time. This results in a procecure that is alternately implicit on rows for one half time step and impiicit on columns for the next half time step, hence the name alternating-direction implicit method.

Many of the symbois and techniques in the following work are similar to those used by Burley (3) who worked out a solution for a heat flow problem in terms of the alternating-direction implicit method. The continuity equation for a P-type base will be considered first so the excess minority carrier concentration will be n. With reference to Figure 1l, the two difference equations referred to in the above discussion will be

$$
\begin{equation*}
A_{n}^{\prime}{ }_{i-1, j}-B_{n}^{\prime}{ }_{i, j}+C n^{\prime}{ }_{i+i, j}=-A n_{i, j-1}+B n_{i, j}-C n_{i, j+1} \tag{27}
\end{equation*}
$$

for the x-implicit half step and

$$
\begin{equation*}
A l n^{\prime}{ }_{i, j-1}-\operatorname{BMln}^{\prime}{ }_{i, j}+C \ln ^{\prime}{ }_{i, j+1}=-A n_{i-1, j}+\mathrm{BMn}_{i, j}-C_{i+1, j} \tag{28}
\end{equation*}
$$

For the y-implicit haif step where Equation 27 and 28 must be applied alce:nateiy with eçul sized steps. The coefficients defined in these two equations are singly subscripted variables since a set of equations is written for each row for the x-iteration and for each colum for the y-iteration. For simplicity, the singly subscripted nature of these coefficients is not indicated in the equations. Here the primed vaiue implias that this is the unknown value at tine starting time plus a time increment while the unprimed values are the known values at the starting time. Application of Equation 27 to a row or Equation 28 to a column wiil result in a set of N simultaneous equations in terms of N unknowns that form a tri-diagonal matrix which can be solved by use of the algorithm given by Peaceman and Rachford (21). For r $=1,2, \cdots \cdots, N$ being the N nodes that appear along a given row or colum the system of equations that result are shown delow, with the subscripts shown being values of r.

$$
\begin{align*}
& B_{1} n_{I}^{\prime}+C_{1} n_{2}^{\prime}=D_{1} \\
& A_{r} n_{r-I}^{\prime}+B_{r} n_{r}^{\prime}+C_{r} n_{r+1}^{\prime \prime}=D_{r} \quad(2 \leq r \leq N-1) \\
& A_{N} n_{N-I}^{\prime}+B_{N} n_{N}^{\prime}=D_{N} \tag{29}
\end{align*}
$$

The constant A_{r} is A or $A 1, C_{r}$ is C or $C I, B_{r}$ is either ($-B$) or ($-B Y I$) depending on which equation is being applied, and D_{r} is equal to the entire right hand side of whichever equation is being applied. The
algorithm for solution of the system of Equations 29 follows.

$$
\begin{array}{ll}
w_{1}=B_{1} & \\
w_{r}=B_{r}-A_{r} b_{r-1} & (2 \leq r \leq N) \\
b_{r}=C_{r} / w_{r} & (1 \leq r \leq N-1) \\
g_{1}=D_{1} / w_{1} & \\
g_{r}=\left(D_{r}-A_{r} g_{r-1}\right) / w_{r} & (2 \leq r \leq N) \tag{32}
\end{array}
$$

The solution is

$$
\begin{array}{ll}
n_{N}^{\prime}=g_{N} \\
n_{r}^{\prime}=g_{r}-b_{r} n_{r+1}^{\prime} & (1 \leq r \leq N-1) \tag{33}
\end{array}
$$

Equations 30 through 32 are calculated in order of increasing r and Equation 33 in order of decreasing r. One complete iteration consists of two equal half steps where the first is the x-implicit half step for which Equation 29 is written and solved by the given algorithm row-byrow over the entire region of interest, and the second is the y-implicit half step for which Equation 29 is written and solved column-by-column over the entire region of interest. The general flow diagram for the iteration program for either base 1 or base 2 is shown in Figure 13, though in actuality two different programs were used due to the differences in coefficients for the two bases.

Finite difference form of the continuity equation
The mesh points formed by the horizontal and vertical grid lines shown in Figure 11 will be the points at which the approximation to the exact solution of the continuity equation will be found. For each mesh

Figure 13. Flow diagram of continuity equation iteration program
point there is an associated mesh region $r_{i, j}$ with a width of Δx and a height of Δy as shown in Figure 14 for an interior mesh point. In Figure 14, Δx and Δy are shown divided into two equal parts. This results when assuming a uniform mesh spacing that is a convenient, but not necessary, assumption. For each mesh point at which the value of $n_{i, j}$ for base I or $p_{i, j}$ for base 2 is unknown, the continuity equation is integrated over the mesh region $r_{i, j}$. The excess minority carrier concentration will be known along the junctions as a result of the base bias calculations.

The region of P-type base 1 will be considered first. In this region there is in general a concentration of minority carriers that is high at the emitter and low at the collector. The majority carriers that must be supplied to the base to maintain approximate space charge neutrality will also have a gradient from base to emitter tending to set up a diffusion flow oi holes from emitter to base which would carry the holes away from the emitter and destroy the space charge neutrality. Equilibrium is reached when there is a small unbalance of charge density that sets up an electric field tending to cause holes to move from collector to emitter, and the diffusion of majority carriers in one direction is just canceled by the drift of majority carriers in the opposite direction. The small electric field is in such a direction as to aid the diffusion flow of minority carriers. If the majority carrier current density i_{p} is taken as zero, and the electric field is eliminated between Equations 16 and 17 , the value of minority carrier current density is

$$
\begin{equation*}
\vec{i}_{n}=q\left(1+\frac{n}{n+N_{A}}\right) D_{n} \vec{\nabla}_{n} \tag{34}
\end{equation*}
$$

The quantity inside the bracket is seen to be unity for $n \ll N_{A}$ and to be two for values of $n \gg N_{A}$. Thus the result of the small electric field that arises due to the causes just discussed is to cause the effective diffusion constant to double for very high injection levels. This effect is important only at high injection levels. The value inside the brackers is defined as

$$
\begin{equation*}
g=I+\frac{n}{n \div N_{A}} \tag{35}
\end{equation*}
$$

where g is a function of time and position.
The result of the combination of the continuity equation and the minority current density equation with g present to account for high injection levels for base. 1 is

$$
\begin{equation*}
\frac{\partial n}{\partial t}=-\frac{n}{\tau_{n}}+D_{n} \vec{\nabla} \cdot(g \vec{\nabla} n) \tag{36}
\end{equation*}
$$

Here g takes care of the variation of the effective diffusion constant between D_{n} and $2 D_{n}$ so that D_{n} itself can be considered a constant. If the following relationships are defined

$$
\begin{equation*}
x=L X, y=L Y, t=L^{2} T / D_{n} \text {, and } \lambda=L^{2} / \tau_{n} D_{n} \tag{37}
\end{equation*}
$$

where L is the width of the device and X, Y, and T are nondimensional variables, the continuity equation can now be rewritten as

$$
\begin{equation*}
\frac{\partial n}{\partial T}=-\lambda n+\vec{\nabla}^{\prime} \cdot\left(g^{\prime} n\right) \tag{38}
\end{equation*}
$$

where $\vec{\nabla}^{\prime}$ has partials with respect to X and Y. In order to get the finite difference approximation for Equation 38, integration over a given
mesh region $r_{i, j}$ is given as

$$
\begin{equation*}
\iint_{r_{i, j}} \frac{\partial n}{\partial r} d X d Y=\iint_{r_{i, j}}(-\lambda n) d X d Y+\iint_{r_{i, j}} \vec{\nabla}^{\prime} \cdot\left(g^{\prime} n\right) d X d Y \tag{39}
\end{equation*}
$$

If Green's theorem in the plane is appied to the final term in Equation 39 the result is

$$
\begin{align*}
\int_{r_{i, j}} \vec{\nabla}^{\prime} \cdot\left(g \vec{\nabla}^{\prime} n\right) d X d Y & =\int_{r_{i, j}}\left[\frac{\partial}{\partial X}\left(g \frac{\partial n}{\partial X}\right)+\frac{\partial}{\partial Y}\left(g \frac{\partial \eta}{\partial Y}\right)\right] d X d Y \\
& =\int_{C}\left[g \frac{\partial n}{\partial X} Y-g \frac{\partial n^{\prime}}{\partial Y} d X\right] \tag{40}
\end{align*}
$$

The finai form is a line integral to be taken around the contour of $r_{i, j}$ in such a direction that the region $r_{i, j}$ is on the left as advance in the positive direction along the curve is made.

As an illustration of the derivation of the finite difference equation from Equation 39, the necessary details for an internal node as shown in Figure 14 for the X -implicit half time step will be worked out for base 1. The partial with respect to time term can be approximated as

$$
\begin{equation*}
\iint_{\sum_{i, j}} \frac{\partial \bar{t}}{\partial T} d X d Y=\frac{n_{i, i}^{\prime}-n_{i, j}}{\Delta T} \Delta X \Delta Y \tag{41}
\end{equation*}
$$

where the primed value is the unknown value at ($T_{0} \div \Delta T$) and the unprimed vaiue is the known value at T_{0}. The term representing volume recombination can be approximated by using the average value of $n_{i, j}$ over the time increment ΔT.

$$
\begin{equation*}
\iint_{r_{i, j}}(-\lambda \Omega) d X d Y=-\lambda\left(\frac{n_{i, j}^{\prime} \div n_{i, j}}{2}\right) \Delta X \Delta Y \tag{42}
\end{equation*}
$$

Figure 14. An interior grid point (i,j) surrounded by four grid points

Figure 15. A grid point on the exterior base surface

The contour integral starting at "a" and going in a counterclockwise direction around $r_{i, j}$ gives

$$
\begin{align*}
\int_{0}\left(g \frac{\partial n_{n}}{\partial X} Y Y-g \frac{\partial n}{\partial Y} X\right) & =g_{i, j}\left(\frac{n_{i, i+1}-n_{i, j}}{\Delta Y}\right) \Delta X \\
& +g_{i, j}\left(\frac{n_{i-1, i}^{\prime}-n_{i, i}^{\prime}}{\Delta X}\right) \Delta Y \\
& \div g_{i, j}\left(\frac{n_{i, i-1}-n_{i, j}}{\Delta Y}\right) \Delta X \\
& \div g_{i, j}\left(\frac{n_{i+1, j}^{\prime}-n_{i, j}^{\prime}}{\Delta X}\right) \Delta Y
\end{align*}
$$

If ail the tems of Equations 41, 42, or 43 are gathered into the form show in Equation 27, the results for the coefficients are

$$
\begin{align*}
& A=g_{i, j} \frac{\Delta Y}{\Delta X}, B=2 g_{i, j} \frac{\Delta Y}{\Delta X} \div \frac{\Delta X \Lambda Y}{\Delta T}+\frac{\lambda \Delta X \Delta Y}{2}, c=g_{i, j} \frac{\Delta Y}{\Delta X} \tag{44}\\
& A I=g_{i, j} \frac{\Delta X}{\Delta Y}, B I=2 g_{i, j} \frac{\Delta X}{\Delta Y}-\frac{\Delta X \Delta Y}{\Delta T}+\frac{\lambda \Delta X \Lambda Y}{2}, C 1=g_{i, j} \frac{\Delta X}{\Delta Y}
\end{align*}
$$

The details on the Y-implicit difference equation for the internal nocie for base 1 will be found in Table 1.

The X-implicit finite difference equation for base I will now be considered for a node that is on the right external surface of the base as shown in Figure 15. The partial with respect to time term wili be simply

$$
\begin{equation*}
\int_{r_{i, j}} \frac{\partial n}{\partial T} d X d Y=\left(\frac{n_{i, j}^{\prime}-n_{i, j}}{\Delta I}\right) \frac{\Delta X \Delta Y}{2} \tag{45}
\end{equation*}
$$

The next term to be considered is the volume recombination term. The result for this term is

$$
\begin{equation*}
\iint_{r_{i, j}}(-\lambda n) d X d Y=-\lambda\left(\frac{n_{i, i}^{\prime}+n_{i, i}}{2}\right) \frac{\Delta X \Delta Y}{2} \tag{46}
\end{equation*}
$$

The contour integral is the term that is effected by the boundary condition at the external surface as given by Equation 20 in terms of the appropriate minority carrier concentration for base 1 .

$$
\begin{align*}
\int_{C}\left(g \frac{\partial n^{\prime}}{\partial X} d Y-g \frac{\partial n^{\prime}}{\partial Y} d X\right) & =g_{i, j}\left(\frac{n_{i, j+1}-n_{i, i}}{\Delta Y}\right) \frac{\Delta X}{2} \\
& +g_{i, j}\left(\frac{n_{i-1, j}^{\prime}-n_{i, j}^{\prime}}{\Delta X}\right) \Delta Y \\
& +g_{i, j}\left(\frac{n_{i, i-1}-n_{i, i}}{\Delta Y}\right) \frac{\Delta X}{2} \\
& -\frac{S}{D_{n}} n_{i, j}^{\prime} \Delta Y \tag{47}
\end{align*}
$$

If all the coefficients of the various terms are gathered together, the values for $A, B, C, A 1, B 1$, and $C 1$ for this particular type of node are

$$
\begin{align*}
& A=g_{i, j} \frac{\Delta Y}{\Delta X}, B=g_{i, j} \frac{\Delta Y}{\Delta X}+\frac{\Delta X \Delta Y}{2 \Delta T}+\frac{\lambda \Delta X \Delta Y}{4}+\frac{S \Delta Y}{D_{n}}, C=0 \\
& A I=g_{i, j} \frac{\Delta X}{2 \Delta Y}, B I=g_{i, j} \frac{\Delta X}{\Delta Y}-\frac{\Delta X \Delta Y}{2 \Delta T}+\frac{\lambda \Delta X \Delta Y}{4}, C I=g_{i, j} \frac{\Delta X}{2 \Delta Y} \tag{48}
\end{align*}
$$

The details on the y-implicit difference equation for this type of surface node will be found in Table 1.

For base 1 of the devices shown in Figures 6 and 7 there are various types of nodal points to handle, and the different types are assigned identification numbers. Table 1 shows the assigned numbers and gives a description either in words or a node picture, in which an area labeled

Table 1. Node identification and values for iteration coefficients for base 1

Table 1 (Continued)

Node ID No.	Node Description	A C	A1	C1	M	N	B	B1	
10	1 1 1 1	'TYOX TYOX	TXOY	TXOY	M_{1}	N_{1}	B	B1	
11	First 10 node below center jct.	X-Iteration: Y-Iteration:	Node 10 Node 10	equati equatio					quantity

1 is inside the base region while an area labeled 0 is outside, for the necessary node types of base 1. For the X-iteration

$$
\begin{equation*}
H=A I_{i, j-1}-B \ln _{i, j}+C n_{i, j+1} \tag{49}
\end{equation*}
$$

and for the Y-iteration

$$
\begin{equation*}
H=A n_{i-1, j}-B M n_{i, j}+C n_{i+1, j} \tag{50}
\end{equation*}
$$

The coefficients of Equations 27 and 28 are defined in Table 1 for base 1 in terms of the following defined parameters:

$$
\begin{align*}
& S_{1}=S \Delta X / D_{n}, S_{3}=S \Delta Y_{1} / D_{n}, M_{1}=\Delta X \Delta Y_{1} / \Delta T, N_{1}=\Delta X \Delta Y_{1} / 2 \\
& Y O X=g_{i, j} \Delta Y_{1} / 2 \Delta X, X O Y=g_{i, j} \Delta X / 2 \Delta Y_{1}, T Y O X=2 Y O X, T X O Y=2 X O Y \tag{51}
\end{align*}
$$

$$
\begin{aligned}
B=A+C+M+N, B M=B-2 M, B I & =A 1+C I-M+N \\
B M 1 & =B 1+2 M
\end{aligned}
$$

For base 2 , the result of the combination of the continuity equation and the minority carrier current density equations is

$$
\begin{equation*}
\frac{\partial p}{\partial t}=-\frac{p}{\tau_{p}}-\mu_{p} \vec{E} \cdot \vec{\nabla}\left(p+p_{n}\right)+D_{p} \vec{\nabla} \cdot(\vec{\nabla} p) \tag{52}
\end{equation*}
$$

If non-dimensional variables are again defined

$$
\begin{align*}
x=L X, y=L Y, t=L^{2} T / D_{n}, \lambda_{1} & =L^{2} / D_{p} \tau_{p}, \\
\lambda_{2} & =L \mu_{p} / D_{p}, A_{T}=D_{n} / D_{p} \tag{53}
\end{align*}
$$

and the continuity equation is rewritten, the result is

$$
\begin{equation*}
A_{T} \frac{\partial p}{\partial T}=-\lambda_{1} p-\lambda_{2} \vec{E} \cdot \vec{\nabla}^{\prime} p+\vec{\nabla}^{\prime} \cdot\left(\vec{\nabla}^{\prime} p\right) \tag{54}
\end{equation*}
$$

where the ∇^{\prime} operator has partials with respect to X and Y. The A_{T} constant is necessary so that the time variable T is the same for both base regions.

When base 2 of the device is considered, the electric field 'present cannot be handled in terms of the g parameter since the majority carrier current flow cannot be considered negligible in this relatively low alpha base. The only type of term for the continuity equation for the base 2 region given as Equation 54 that is different from the types of terms handled for the base 1 region is the one containing the electric field. This term can be rewritten in the form

$$
\begin{align*}
\iint_{i, j}\left(-\lambda_{2} \vec{E} \cdot \vec{\nabla}^{\prime} p\right) d X d Y= & -\lambda_{2} \iint_{r_{i, j}}\left[\vec{E} \cdot \vec{\nabla}^{\prime}\left(p+p_{n}\right)\right. \\
& \left.+\left(p+p_{n}\right) \vec{\nabla}^{\prime} \cdot \vec{E}\right] \operatorname{dXdY} \tag{55}
\end{align*}
$$

Now, when $\vec{\nabla}^{\prime} \cdot \vec{E}$ is of appreciable size, it is reasonable to assume that the excess minority carrier concentration p is much greater than the equilibrium minority carrier concentration p_{n}. Equation 55 can then be rewritten as

$$
\begin{align*}
\iint_{i, j}\left(-\lambda_{2} \vec{E} \cdot \vec{\nabla}^{\prime} p\right) d X d Y= & -\lambda_{2} \iint_{r_{i, j}}\left[E_{x} \frac{\partial p}{\partial X}+E_{y} \frac{\partial p}{\partial Y}\right. \\
& \left.+p \frac{\partial E_{x}}{\partial X}+p \frac{\partial E_{y}}{\partial Y}\right] \operatorname{dXdY} \tag{56}
\end{align*}
$$

When this term is written in its finite-difference form for an internal node for the x-iteration the result is

$$
\begin{align*}
\iint_{r_{i, j}}\left(-\lambda_{2} \vec{E} \cdot \vec{\nabla}^{\prime} p\right) d x d Y & =p_{i-1, j}^{\prime}\left(\frac{\lambda_{2} \Delta Y_{2}}{4}\right)\left(E_{x_{i, j}}+E_{x_{i, 1, j}}\right) \\
& -p_{i, j}^{\prime}\left(\frac{\lambda_{2} \Delta x}{4}\right)\left(E_{y_{i, j+1}}-E_{y_{i, j-1}}\right) \\
& -p_{i+1, j}^{\prime}\left(\frac{\lambda_{2} \Delta Y_{2}}{4}\right)\left(E_{x_{i+1, j}}+E_{x_{i, j}}\right) \\
& +p_{i, j-1}\left(\frac{\lambda_{2} \Delta x}{4}\right)\left(E_{y_{i, j}}+E_{y_{i, j-1}}\right) \\
& -p_{i, j}\left(\frac{\lambda_{2} \Delta Y_{2}}{4}\right)\left(E_{x_{i+1, j}}-E_{x_{i-1, j}}\right) \\
& -p_{i, j+1}\left(\frac{\lambda_{2} \Delta x}{4}\right)\left(E_{y_{i, j+1}}+E_{y_{i, j}}\right) \tag{57}
\end{align*}
$$

The details of handling all the other terms is exactly the same as was done earlier for the base 1 region and will not be repeated here.

The general form of the finite difference equations for base 2 is exactly the same as Equations $27,28,49$, and 50 with n replaced by p since the excess minority carriers are holes in base 2. As in base 1 , there are various types of nodes to be handled so identification numbers are assigned to these nodes. The coefficients of the finite difference equations are defined in Equation 58 and in Table 2 in terms of the following defined parameters:

$$
\begin{aligned}
& S 2_{3}=S \Delta Y_{2} / D_{P}, M_{2}=A_{T} \Delta X \Delta Y_{2} / \Delta T, N_{2}=\lambda_{1} \Delta X \Delta Y_{2} / 2 \\
& \mathrm{YOX}_{2}=\Delta Y_{2} / 2 \Delta X, X O Y_{2}=\Delta X / 2 \Delta Y_{2}, T Y O X_{2}=2 \mathrm{YOX}_{2}, T X O Y_{2}=2 X O Y_{2} \\
& \mathrm{FYOX}_{2}=4 \mathrm{YOX}_{2}, \mathrm{FXOY}_{2}=4 X O Y_{2}, B M=\mathrm{B}-2 \mathrm{M}, \mathrm{BMI}=\mathrm{BI}+2 \mathrm{M}
\end{aligned}
$$

Table 2. Node identification and values for iteration coefficients for base 2

Node ID No.	Node Description	A	c^{\prime}	A1	C1	M	N	B	B1
1	$\begin{array}{l\|l} 0 & 1 \\ \hline 0 & 1 \end{array}$	0	$\begin{aligned} & \text { TYOX2 } \\ & \text {-c11 } \end{aligned}$	$\begin{aligned} & \text { XOY2 } \\ & \text {-SCJL/2 } \end{aligned}$	$\begin{aligned} & \text { XOY2 } \\ & \text {-SCJT/2 } \end{aligned}$	$\mathrm{M}_{2} / 2$	$\mathrm{N}_{2} / 2$	$\begin{aligned} & \mathrm{TYOX}_{2}+\mathrm{S} 2_{3}+\mathrm{M}+\mathrm{N} \\ & +(\mathrm{SCJT}-\mathrm{SCJL}) / 2 \end{aligned}$	$\begin{aligned} & \mathrm{TXOY}_{2}-\mathrm{M}+\mathrm{N} \\ & +\mathrm{CM}_{11} \end{aligned}$
2	First 1 node below S.C. or $\mathrm{J}_{\mathrm{e}}^{1}$	$\begin{aligned} & \mathrm{X}-\mathrm{It} \\ & \mathrm{Y}-\mathrm{It} \end{aligned}$	ration: ration:	Node 1 Node 1	uation as uation,		s includ	in H as a kn	quantity
3	First 1 node above center jct.		ration: ration:	Node 1 Node 1	uation as uation,		s includ	in H as a kn	quantity
4	$\begin{array}{l\|l} 1 & 0 \\ \hline 1 & 0 \end{array}$	$\begin{aligned} & \mathrm{TYOX}_{2} \\ & +\mathrm{A}_{11} \end{aligned}$		$\begin{aligned} & \mathrm{XOY}_{2} / 2 \\ & +\mathrm{SCJL}_{2} \end{aligned}$	$\begin{aligned} & \text { xoy }_{2} \\ & -\mathrm{SCJT} / 2 \end{aligned}$		$\mathrm{N}_{2} / 2$	$\begin{aligned} & \mathrm{TYOX} \\ & +\left(\mathrm{SCJT}-\mathrm{SCJL} \mathrm{SC}^{+\mathrm{N}+\mathrm{N}} / 2\right. \end{aligned}$	$\begin{aligned} & \mathrm{TXOY}_{2}+\mathrm{S}_{2} \\ & -\mathrm{M}+\mathrm{N}+\mathrm{AM}_{11} \end{aligned}$
5	First 4 node below J_{2} junction ${ }^{2}$	$\begin{aligned} & \mathrm{X}-\mathrm{It} \\ & \mathrm{Y}-\mathrm{It} \end{aligned}$	ration: ration:	Node 4 Node 4	uation as uation,	$\begin{aligned} & i t \\ & \mathrm{p}_{\mathrm{i}, j}^{\prime} \end{aligned}$	s includ	in H as a kn	quantity
6	First 4 node above center jet	$\begin{aligned} & \mathrm{X}-\mathrm{It} \\ & \mathrm{Y}-\mathrm{It} \end{aligned}$	ration: ration:	Node 4 Node 4	uation a uation,	$t_{1} s$	includ	in H as a kn	quantity
7	First 10 node left of known node	$\begin{aligned} & X-I \\ & Y-I \end{aligned}$	ration: ration:	Node 10 Node 10	quation, quation		inclu nds	in H as a kn	quantity
8	First 10 node node below lef of known	$\mathrm{ft} \underset{\mathrm{Y}-\mathrm{It}}{\mathrm{X}}$	ration: ration:	Node 10 Node 10	quation, quation,	$\begin{aligned} & p_{i+1}^{\prime}, \\ & 1 p_{i, j}^{\prime} \end{aligned}$	inclu incl	din H as a kn ed in H as a k	quantity quantity

Table 2 (Continued)

Node ID No.	Node Description	A C	A1	C1	M	N	B	B1
9	First 10 node above center jct.	X-Iteration: Y-Iteration:	Node 10 equation as it stands Node 10 equation, $A l_{p_{i, j-1}^{\prime}}^{\prime}$ included in H as a known quantity					
10	1 1 1 1	$\begin{array}{ll} \text { TYOX }_{2} & \text { TYOX }_{2} \\ \text { +A }_{11} & { }^{-G_{11}} \end{array}$	$\begin{gathered} \mathrm{TXOY}_{2} \\ +\mathrm{SCJL} \end{gathered}$	$\begin{aligned} & \mathrm{TXOY}_{2} \\ & -\mathrm{SCJT}^{2} \end{aligned}$	M_{2}		$\begin{aligned} & \mathrm{FYOX}_{2}+\mathrm{M}+\mathrm{N} \\ & +\mathrm{SCJT}-\mathrm{SCJL} \end{aligned}$	$\begin{aligned} & \mathrm{FXOY}_{2}-\mathrm{M}+\mathrm{N} \\ & { }^{+\mathrm{C}_{11}-\mathrm{A}} 11 \end{aligned}$
11	First 10 node below a known node	X-Iteration: Y-Iteration:	Node 10 equation as it stands Node 10 equation, $C 1 p_{i, j+1}^{\prime}$ included in H as a known quantity					

$$
\begin{align*}
& A_{I 1}=\left(\lambda_{2} \Delta Y_{2} / 4\right)\left(E_{x_{i, j}}+E_{x_{i-1, j}}\right), C_{11}= \\
&\left(\lambda_{2} \Delta Y_{2} / 4\right)\left(E_{x_{i+1, j}}\right. \\
&\left.+E_{x_{i, j}}\right) \\
& A M_{11}= A_{11}-\lambda_{2} \Delta Y_{2} E_{x_{i-1, j}} / 2, C M_{11}= \\
& S C J L= C_{11}-\lambda_{2} \Delta Y_{2} E_{x_{i, j}} / 2 \tag{58}\\
&\text { SX/4)(E } \left.\sum_{y_{i, j}}+E_{y_{i, j-1}}\right), \\
& \operatorname{SCJT}=\left(\lambda_{2} \Delta X / 4\right)\left(E_{y_{i, j+1}} E_{y_{i, j}}\right)
\end{align*}
$$

The terms $A_{11}, A M_{11}, C_{11}$, and $C M_{11}$ are singly subscripted variables while SCJL and SCJT are doubly subscripted variables. It has been assumed that the electric field in the x-direction does not vary as a function of y, but to take into account the effects of volume recombination in a wide base region the electric field in the y-direction is assumed to be a function of both x and y.

PERFORMANCE OF THE MATHEMATICAI MODEL

The accuracy of the finite difference solution to the partial differential equation is of interest and must be considered. The performance of this model can be discussed in terms of the convergence and stability of the finite difference method used. As defined in the paper by $0^{\text {'Brien et }}$ al. (20), the question of convergence is concerned with whether or not the exact solution of the finite difference equation approaches the exact solution of the partial differential equation while the question of stability is concerned with whether or not the numerical solution of the finite difference equation approaches the exact solution of the finite difference equation. In this same paper truncation error is defined as the difference between the exact solution of the finite difference and the partial differential equations while numerical error is defined as the difference between the exact solution and the numerical solution of the finite difference equation. Thus the question of the convergence of a particular iteration scheme is related to truncation error caused by the finite distance between mesh points while the question of stability is related to the numerical errors such as round-off errors.

O'Brien et al. (20) has demonstrated unconditional stability for the alternating direction implicit method for the general parabolic partial differential equation assuming constant boundary conditions and constant coefficients. Lees (11b) has demonstrated unconditional stability for the very general parabolic partial differential equation

$$
\begin{align*}
\frac{\partial u}{\partial t} & =\frac{\partial}{\partial x}\left(a(x, y, t) \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(b(x, y, t) \frac{\partial u}{\partial y}\right) \\
& +f\left(x, y, u, t, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) \tag{59}
\end{align*}
$$

for the alternating direction implicit method. Douglas (4b) has shown that unconditional stability of an iteration method also implies the convergence of that method with proper choice of space and time mesh increments. The continuity equation being worked with is of the general form shown as Equation 59 and thus the alternating direction implicit method used for the continuity equation should be both stable and convergent. Thus the question of convergence and accuracy will depend on the choice of space and time mesh increments.

Once a particular choice of spatial mesh size is made, the accuracy is dependent on the time increment size. In general, for that part of the solution where the quantity being solved for is far from steady state and is varying rapidly the time increment size should be small for best accuracy. When the quantity being solved for is approaching its steady state value the time increment size can be made considerably larger. A precise best choice for the time increment size is very difficult to make, Varga (24). A conveient way to check the accuracy for a particular time increment at any time in the solution is to use a new time increment half, or some other fraction, as large as the old time increment and check the results obtained for both new and old time increments at the same point in time. This approach was used to select the values of the array $\operatorname{TM}(\mathrm{L})$, TMAX, and $\operatorname{TMAX2}$ that was used in the computer program for the calculation of the time increment size for the
succeeding step. The rate of change of n in base 1 or p in base 2 was calculated and used as a basis for choosing a particular value of TM(L) which was then used as a multiplier for TMAX or TMAX2 as shown in Figure 16. The minimum size of the time increment will ordinarily be limited by consideration of the amount of computer time needed. The cost of greater accuracy as the minimum time increment becomes smaller will be an increase in computer time needed to carry out the solution.

Comparison to Experimental Results

In order to test the capability of the model to predict device behavior, some devices of the form shown in Figure 17 were obtained from Motorola, Inc. with the dimensions given in the figure. The depth of the device into the paper was 0.381 cm . If a comparison between Figure 6 and Figure 17 is made; it is noted that if the device of Figure 17 is divided in half as shown by the dashed line the Motorola device can then be analyzed by means of the computer program for the device of Figure 6. A 10×10 grid of mesh lines over each base region was used for both turn-on and turn-off calculations.

Base 2 , the N_{2} region, is the starting material and is about 25 ohmem material. The surface concentrations of the P regions are about 5×10^{18} and of the N_{1} region is about 5×10^{20}. Using these values of surface concentrations, when the curves by Irvin (10) are used, the average resistivity of base 1 is found to be approximately $0.33 \mathrm{ohm} \cdot \mathrm{cm}$. Emitter 1 , the N_{I} region, has a resistivity of about 0.0066 ohm•cm while emitter 2 resistivity is about 0.0577 ohm.cm. The capacitances of the junctions of device 2 were found by measurement with a G. R. 1650

Figure 16. Flow diagram of calculation of time increment program

Figure 17. Schematic sketch of the commercial device
impedance bridge to be about $0.1085 \times 10^{-6} \mathrm{f} / \mathrm{cm}^{2}$ for emitter 1 and about $0.538 \times 10^{-8} \mathrm{f} / \mathrm{cm}^{2}$ for both the center and emitter 2 junctions, where all these values are for the zero bias case. The values of $\mu_{\mathrm{n}}=750 . \mathrm{cm}^{2} / \mathrm{volt} \cdot \mathrm{sec}, \mu_{\mathrm{p}}=500 \mathrm{~cm}^{2} / \mathrm{volt} \cdot \mathrm{sec}, \mathrm{D}_{\mathrm{n}}=19.43 \mathrm{~cm} / \mathrm{sec}$, and $D_{p}=12.95 \mathrm{~cm}^{2} / \mathrm{sec}$ were found by use of curves given by Phillips (22a). Since the response of device 2 is the median response of the three devices, the model was set up for comparison to it.

The circuit used for turn-on with reference to Figure 9 had a value $R_{E X}$ of 100 ohms and an E of 20 volts. The model values used were $R_{E X}=200$ ohms and $E=20$ volts with the value of $R_{E X}$ doubled to account for the fact that the model would have exactly half as much total current since the actual device is twice as large. The test circuit for turn-on used a pulse for I_{g} that was 100 ma in magnitude. The value of gate current used to drive the model was 50 ma to account for the fact that the case drive for the model would be only half as much as for the actual device. The response for all of the three devices for turn-on are shown in Figure 18 as solid lines. The model prediction for turn-on is shown as circled cots. The comparison between the curve for device 2 and the model prediction is quite good. The behavior of the voltages $\mathrm{VE}(\mathrm{I}), \mathrm{VC}(\mathrm{I})$, and $\operatorname{GJV}(\mathrm{I})$ for turn-on are shown for several values of time as Figure 19. The minority carrier concentration for base 1 along the $\mathrm{I}=\mathrm{NIX}$ column is shown in Figure 20 and the minority carrier concentration for base 2 along the $I=$ NIX column in Figure 21, both for the turn-on case.

The model was also used to predict the turn-off response of the

Figure 18. Model prediction and commercial devices turn-on behavior

Figure 19. Behavior of junction voltages during turn-on, all versus x-direction mesh lines

Figure 20. Minority carrier concentration along $I=N I X$ column versus jth row in base 1 for turn-on

Figure 21. Minority carrier concentration along I=NIX column versus jth row in base 2 for turn-on
same three Motorola devices. The same circuit and external circuit parameters were used with a negative gate pulse of about 70 ma applied to the circuit. The model has a negative gate pulse of about 35 ma to account for the Motorola device being double the model device. The model response and the response of the three devices are all shown in Figure 22. The minority carrier concentration for base 1 along the $I=N I X$ column is shown in Figure 23 and the minority carrier concentration for base 2 along the $I=$ NIX column in Figure 24, both for the turn-off case. The base 2 region caused some difficulty during the early stages of turn-off due to the high resistivity of this base cāusing very small transverse currents to give a fairly large change in voltage along emitter 2. This problem disappears once the early stage of turn-off is past.

The values of recombination lifetimes for the two base regions were not exactly known, the values used for the model prediction for the response curves shown were $\tau_{n}=0.285 \mu \mathrm{~s}$ for base 1 and $\tau_{p}=2.65 \mu \mathrm{~s}$ for base 2. These values were selected on the basis of getting the best comparison to the response of the commercial devices.

Figure 22. Model prediction and commercial devices turn-off behavior

Figure 23. Minority carrier concentration along $I=N I X$ column versus jth row in base 1 for turn-off

Figure 24. Minority carrier concentration along I = NIX column versus jth row in base 2 for turn-off

The intent of this thesis was to use numerical techniques to model the transient behavior of a three-terminal four-layer $p-n-p-n$ device that is controllable by a gate pulse of current for both turn-on and turn-off. The computer program written for this purpose can be used for the type of device shown as Figure 6 and also for the shorted-emitter type of device shown as Figure 7. The computer program takes into account the transverse variations in voltage and minority carrier concentration in both base 1 and base 2 of both types. It also accounts for conductivity modulation in the base regions as well as electric fields that occur.

The performance of the computer program was tested by comparison to commercial devices obtained from Motorola, Inc. Three devices were tested for both turn-on and turn-off in the circuit of Figure 9 with a d-c voltage of 20 volts and a resistive load of 100 ohms. The computer model prediction and the three device curves are shown on Figure 18 for turn-on. The model prediction compares quite well with the results for device 2 for this case. The results of a turn-off test is shown as Figure 22 where the external circuit source and load are the same values as used for the turn-on test. Again the model prediction compares quite well with the device performance.

The computer program developed in this thesis should be a very useful tool for an aid in the fabrication of devices of this type. By use of the model, an answer could be quickly obtained as to what result the variation of either a dimension or a physical constant of the material would have on the switching behavior of the device. The
relative importance of various physical parameters can also be examined. The insight that is gained about the functioning of this device is another feature of the use of a model of this type. The allocation of base drive for either base at any point in time is known so that the relative importance of the different junction capacitances, the volume recombination within the base regions, and the supplying of majority carriers to maintain space charge neutrality can easily be seen.

A great deal of time and effort was put into the writing of the computer program used to model this device. There are undoubtedly many improvements that could be made that would allow the program to be faster and more efficient in the calculations that must be gone through, however, the results obtained were good with the program as it stands. The approximate time to go through the bias calculation and the iteration of the finite difference equation for one base for a 10×10 spatial mesh on the IBM 360 system was about 1.2 seconds when the center junction was reverse biased. The time required with a forward biased center junction was somewhat higher.

IITERATURE CITED

1. Aicrich, R. W. and N. Fiolonyak, JF. Multitcrminal p-n-n-n witches. Institute Racio Engineers Procecdings 4ó: 1236-i239. 1958.
2. Adrich, R. W. and N. ت̈olonyai, Jn. Two-terminal asymmetrical and symmetrical silicon negative resistance switches. journal of Appiied Physics 30: 1819-1524. 1959.
3. Surley, W. Hi-104 two-dimensional, transient or steady heat conduction. hawthorne, N. Y., DP Program Information Dept., International Business Machines. circa 1963.
4. Docison, Wi. H. Silicon controlled rectifiers: lateral tum-on velocity, laerral field distribucion and lateral skip phenomenon. Unpublished Ph.D. thesis. Pittsburgh, Pennsylvania, Deparment of Electrical Engineering, Carnegie Institute of Technoiogy. 1965.
5. Douglas, J., Jr. A survey of numerical methods for paraboic diEferential equations. Açvances in Computers 2: 1-54. 1961.
6. Fletcher. N. F. Some aspects of the design of power transistors. Institute Radio Engineers Proceedings 43: 551-559. 1955.
7. Gentry, F. E., E. W. Gutzwiller, N. Holonyak, Jr., and E. E. Von Zastrow. Semiconductor controlled rectifiers: principles and applications of $p-n-p-n$ devices. Englewood Clifís, N.J., Prentice-Hall, Inc. 1964.
8. Gentry, F. E., R. I. Scace, and J. K. Flowers. Bidirectional trioce p-n-p-n switches. Institute of Electrical and Electronic Engineers Proceedings 53: 355-369. 1965.
9. Gibbons, J. F. Semiconductor electronics. New York, N.Y., McGraw-Hill Book Co. i956.
10. Goldey, J. M., I. M. Mackintosh, and I. M. Ross. Turn-off gain in p-n-p-n triodes. Solid-State Electronics 3: 119-122. 1961.
11. Irvin, J. C. Resistivity of buik silicon and of diffused layers in silicon. Bell System Technical Journal 41: 387-410. 1962.

1la. Jonscher, A. K. Notes on the theory of four-layer semiconductor switches. Solid-State Electronics 2: 143-148. 1961.

IIb. Iees, M. Alternating direction and semi-explicit difference methods for parabolic partiai differential equations. Numerische Mathematik 3: 398-412. 1961.
12. Lesk, I. A. Germanium P-N-P-N switches. Institute of Radio Engineers Transactions on Electron Devices 1, ED-6: 28-34. 1959.
13. Longini, R. L. and J. Melngailis. Gated turn-on of four layer switch. Institute of Electrical and Electronic Engineers Transactions on Electron Devices 3, ED-10: 178-185. 1963.
14. Mackintosh, I. M. The electrical characteristics of silicon $\mathrm{p}-\mathrm{n}-\mathrm{p}-\mathrm{n}$ triodes. Institute Radio Engineers Proceedings 46: 1229-1235. 1958.
15. Middlebrook, R. D. An introduction to junction transistor theory. New York, N.Y., John Wiley and Sons, Inc. 1957.
16. Misawa, T. Turn-on transient of $p-n-p-n$ triode. Journal of Electronics and Control 7: 523-533. 1959.
17. Moll, J. L., M. Tanenbam, J. M. Goldey, and N. Holonyak, Jr. P-n-p-n transistor switches. Institute Radio Engineers Proceedings 44: 1174-1182. 1956.
18. Moyson, J. and J. Petruzella. Investigation of electronically controllable turn-off controlled rectifiers. General Electric Co. Rectifier Components Department Report 4: 1-75. 1961.
19. Mueller, C. W. and J. Hilibrand. The "thyristor": a new highspeed switching transistor. Institute Radio Engineers Transactions on Electron Devices 1, ED-5: 2-5. 1958.
20. O'Brien, G. G., M. A. Hyman, and S. Kaplan. A study of the numerical solution of partial differential equations. Journal of Mathematics and Physics 29: 223-251. 1951.
21. Peaceman, D. W. and H. H. Rachford, Jr. The numerical solutions of parabolic and elliptic differential equations. Journal of the Society for Industtrial and Applied Mathematics 3: 28-41. 1955.

22a. Phillips. A. B. Transistor engineering and introduction to integrated semiconductor circuits. New York, N.Y., McGraw-Hill Book Co. 1962.

22b. Sah, C. T., R. N. Noyce, and W. Shockley. Carrier generation and recombination in $p-n$ junctions and $p-n$ junction characteristics. Institute Radio Engineers Proceedings 45: 1228-1243. 1957.
23. Shockley, W. Electrons and holes in semiconductors. New York, N.Y., D. Van Nostrand Company, Inc. 1950.
24. Varga, R. S. Matrix iterative analysis. Englewood Cliffs, N.J., Prentice-Hall, Inc. 1962.

ACKNOWLEDGMENTS

The author wishes to thank Dr. A. V. Pohm for his very able guidance. The use of the Computer Center facilities of Iowa State University is also appreciated. Thanks are due to Motorola and Texas Instruments for devices and information received. Advice on computer programming by R. A. Sharpe and June Smith was very valuable. Comments from, and discussions with Dr. Joseph M. Brown were also very helpful and much appreciated.

APPENDIX A: DEFINITION OF COMPUTER PROGRAM VARIABLES

The doubly subscripted arrays used in the computer program are listed and defined below.

DNEW (I, J) Electron concentration in base 1
DPEW (I, J) Hole concentration in base 2
EYIJ (I, J) Electric field in y-direction in base 2
IBI (I,J) Base 1 node identification number
IB2 (I, J) Base 2 node identification number
The arrays $\operatorname{SGJL}(I, J)$ and $\operatorname{SCJT}(I, J)$ are used in the calculation of the iteration coefficients and are defined in the text material.

The singly subscripted arrays used in the computer program are listed and defined below.
$\mathrm{VE}(\mathrm{I}) \quad$ Present value of emitter 1 voltage
$\mathrm{VT}(\mathrm{I}) \quad$ Value of $\mathrm{VE}(\mathrm{I})$ for prior iteration
VC(I) Present value of center junction voltage
$\operatorname{VCT}(I) \quad$ Value of $\mathrm{VC}(\mathrm{I})$ for prior iteration
$\operatorname{CJV}(I) \quad$ Present value of emitter 2 voltage
GJVT(I) Value of CJV(I) for prior iteration
EX(I) Base 2 x-direction electric field
EY(I) Voltage difference across base 2
GJC(I) Electron current across center junction
$\operatorname{GJC2}(I) \quad$ Hole current across center junction
E1C(I) Electron current from emitter 1 into base 1
$\operatorname{CCC}(\mathrm{I}) \quad$ Hole current from base 1 into emitter 1
EJC(I) Hole current from emitter 2 into base 2

AJ (I)	Electron current from base 2 into emitter 2
RB (I)	Base İ resistivity
RHO2 (I)	Base 2 resistivity
CEM1 (I)	Emitter 1 capacitance (f / cm^{2})
$\operatorname{CGJ}(\mathrm{I})$	Center junction capacitance (f / cm^{2})
CEM (I)	Emitter 2 capacitance ($\mathrm{f} / \mathrm{cm}^{2}$)
BN(I)	Equilibrium value of base 1 electrons
B1P (I)	Base 1 majority carrier concentration
BP (I)	Equilibrium value of base 2 holes
B2N(I)	Base 2 majority carrier concentration
TEFF (I)	Volume recombination in base 1 or base 2
BULKI (I)	Majority carrier charge to base 1 to maintain space charge equilibrium
BULK2 (I)	Majority carrier charge to base 2 to maintain space charge equilibrium
PIC (L)	Values of rate of change of minority carrier concentration
TM (L)	Time multiplier used to calculate time increment size
LC1 (J)	Leftmost value of I in the Jth row, base 1
LC2 (J)	Rightmost value of I in the Jth row, base I
LRI (I)	Bottom boundary J value in the Ith column, base 1
LR2 (I)	Top boundary J value in the Ith column, base 1
LCCl (J)	Leftmost value of I in the Jth row, base 2
LCC2 (J)	Rightmost value of I in the Jth row, base 2
LRRI (I)	Bottom boundary J value in the Ith column, base 2
LRR2 (I)	Top boundary J value in the Ith column, base 2
G (I)	Multiplier of the diffusion constant in base 1

All of the singly subscripted arrays $A, B, C, A 1, B 1, C 1, B M, B M 1, A 11$, and CIl are used as coefficients in the iteration equations for base 1 and base 2 and are defined in the text material. The singly subscripted arrays H, R, and Z are used in the solution of the algorithm defined by Equations 30 through 33. Several other singly subscripted arrays are used temporarily in calculations, but have no permanent definition. The simple variables used in the computer program are listed and -defined below.

B1W,B2W Base I width, base 2 width
E1W,E2W Emitter 1 width, emitter 2 width
EL,D Device width, device depth
XN,XI Number of x-increments, size of x-increments
YN1, YN2 Number of base 1 y-increments, number of base 2 y-increments
Y1I, Y2I Number of base 1 y-increments, number of base $2 y$-increments
Y1I, Y2I Y-increment size. Base 1, base 2
DT,DT2 Normalized time increment size. Base 1, base 2
TIME,TIMZ Normalized total time. Base 1, base 2
FREAL,RTIME Conversion normalized-to-real factor, total real time

TMAX, TMAX2 Maximum time increment. Base 1, base 2
TGATE Time length of gate pulse
DIFN,DIFP Electron diffusion constant, hole diffusion constant
TAU,TAUP Electron average lifetime, hole average lifetime
UN,UP Electron mobility, hole mobility
DLN,DLP Electron diffusion length, hole diffusion length
E1EF,E2EF Emitter 1 efficiency, emitter 2 efficiency

Surface recombination velocity
RHO, RH2

REMI, REM

EXM,EYM

REX,E

BI
Magnitude of gate current pulse
CC1, CC2
Total device electron current, hole current
CC, CGES
Total device current, guessed device current
TRC

DUMY

DDN1 Base 1 value of n for check on rate of change
DDP2
Base 2 value of p for check on rate of change
CEM1Z Emitter 1 value of $C(0)$
CEMZ Emitter 2 value of $C(0)$
CCJZ Center junction value of $C(0)$
CZER1 Emitter 1 current density value for junction recombination calculation

CZERO Emitter 2 current density value for junction recombination calculation

BICH Determines accuracy of base 1 bias calculation
B2CH Determines accuracy of base 2 bias calculation
CFTR Determines accuracy of base 1 bias calculation for forward biased center junction

CFT2 Determines accuracy of base 2 bias calculation for forward biased center junction

CP2 Determines size of first increment of change for TRC or DUMY

B1CPP, B2CPP Determines size of first increment of change for CGES for forward biased center junction

There are also many simple variables that are used for temporary calculations and so are not permanently defined.

The integer variables that are used in the computer program are listed and defined below.

IM
Number of column mesh lines
JMI Number of row mesh lines for base 1
JM2 Number of row mesh lines for base 2
IC,JC Mesh point of base 1 where DDN1 is taken
IC2,JC2 Mesh point of base 2 where DDP2 is taken
NIX,IS Rightmost column of emitter 1, NIX 1
JMT Base 1 row number for center junction
JM2T Base 2 row number for emitter 2
JJE2 Base 2 shorting contact row number
KK, KKM Leftmost column number of emitter 2, KK-1
MMLE Maximum number of iterations for base 1 bias calculation with center junction forward biased

MMLE2 Base 2 counterpart of MMLE
MPC Maximum number of array PIC and TM entries
MAX . Maximum number of iterations for base 1 or base 2 bias calculations

NTM Number of base 1 iterations per base 2 iteration
NTM2 Number of base 2 iterations per base 1 iteration
NSE NSE 0 for device of Figure 6, NSE 1 for device of Figure 7
NSTEP Number of overall iterations per computer run
NOUT, NOUT2 Gives choice as to how much data is output
LTIME LTIME I calculate DT and DT2, LTIME 0 read in DT and DT2

LINT LINT 0 skip base 2 bias if $C C 1$ is smaller than a certain value

There are also many other integer variables used as indices or in temporary calculations that are not permanently defined.


```
    EYFAC=1.601864E-19*Y2I/TAUP
    OQ1=1.0n1864E-10*01F
    Q0=1. tUI 864E-1 G*DIFD
    FRL=1.001864E-10*UP*ARI
    FREAL=EL*EL/OIFN
    CJM1=001*AR1/YII
    CJM1=001*AR1/YII
    CJM2=CO*ARI/Y2I
    GM3=CJM3*E 2N
    CMI=EP%gOmARI/E1
    CM1=EP*OO*ARI/EIW
    AL=1.0-ALPH
    RB1=XI/D/B1H
    WRITE (3,1353) CJMI,CJM2,CJM3,CM3,CML,RB1,RTR
    READ (1,1352) ({DNFW(I,J),I=1,IM),J=I,JMT)
    HKITE (3,1 337) ((ONEW(I,J),I=!,IM),J=1,JMT
    KEAD (1,1352) ((DPEN(I,J),l=1,IM),JEl,JM2T)
    WKITE (3.1337) ((EPEW(I,J),1=I,IM),J=1.JM2T
    KEAD (1,1325) IVE(I),VC(I),CJVII),BULKI(II,8ULK2(I),I=1,IM)
    WKITE (3,1326) (VE(I),VC(I),CJV(I), BULKI (I), BULK2(!),I=1,IM
    KEAU (1,1354) (AJ(I), EX(I), EY(I),RB(I),RHO2(I),I=I,IM)
    WRITE (3,1355) (AJII),EX(I),EY(I),RB(II,RHOZ(I),I=I,IM)
    REAO (1,1300) IVK,NCT2,NCJ,NVCNX,IT1,IT2
    WRITE (3,1301) IVK,NCTZ,NCJ,NVCNX,ITI,ITZ
    READ II,I3521 TRC,TIME,TIM2,CCIU,CC2O,CGES,BICPP,B2CPP,CC,OT,OT2
    WRITE (3,1353I TRS,TIME,TIM2,CC1O,CC2D,CGES,BICPD,B2C,PD,CC,DT,UT }
    RTIME=FREAL#TIME
    NITl=0
    NIT2=0
    NRUN=0
    NRUN2=0
    DO 750 NSTP=1, NSTEP
    COLD=CC
    IF (NUUT2-NRUN2) 3.3.4
NRUN2 =0
NRUN2 =NRUN2+1
WRITE {3.1445
IF(NCT2) 614.614.6!5
READ (1,1352) OT,OI2
IF (TGATE-RTIME) 18.18.19
B1=0.0
OU 250 NT=1.NTM
\F (NCUT-NRUN) a,8,7
NRUN=0
NRUN=NRUN+I
NRUN=NRUN+
CLOS=0.02*CGES
CLOS=0.02*CGES
CLOS2=0.02
CALC ELECTRIC
ON461 [=2.IM
EX(I)=(CJV(I)-CJV(I-I)J/XI
EXMAG=ABS(EX(I))
IF (EXMAG-EXM) 461,461,462
462 EX(I)=(EXMAG/EX(I))*EXM
46! CONTINUE
X(I)=0.0
EX(IM)=0.0
U(1 470 1=1,IM
EY(I)=0.0
AJIBEN = AJ (I)/ARI
```

```
    RTEMP=RHO2 (I)
    00 465 L=1.JM2
    J=JM2T+1-L
    AJDEN =EYFAC#DPEW(I,J)+AJDEN
    AJNENEEYFAC#DPEW(I!J)+A
    MMSIOJI=-AJDEN*RTEM
    MAG=AGS(EYY(I.J)
    F (YMAG-EYM) 465,465,463
EY!J(I,J)=(YMAG/EYIJ(I,J))#EYM
CONTINUE
    DO 454 J=2,JM2T
EY(I)=EYIJ(I,J)#Y2I+EY(I)
470 CUNTINUE
    CCl=0.0
    CC2=0.0
C CALC QUANTITIES AFFECTED BY CONDUCTIVITY MOOULATION
DN 14 l=1, IM
ON(I) =0000 #UP#RB (I)
BP(I)=QOQQ*UN*RHO2(I)
BIP(I)=2.25E+20/BN(I)
B2N(I)=2.25E+20/BP(I)
04=0.0
DO 13 L=2;JM2T
04#(OPEW(I,L+1)+DPEW(I,L))/YN2 +O4
RHO2(I)=RH2/(04/82N(I)+1.0)
M,
Q5=0.C
DO 16 L=L.JMI
05=(ONEW(I,L+1)+DNEN(I,L))/YNI+QS
RB(I)=RHO/(OS/BIP(I)+I.0)
TNI(I) =(05/(05*BIP(I))+I.0)*TAU
QQ=EXP(-QU*VC(II)-1.0
ONEW(I,JMT)=00*DN(I)
GPEW(I,I)=0日#BP{I)
FFCJ=ALOG((BIHD+ONEW(I,JMT))*(B2EL+DPEW(I,I) )/2.25E+2G)/OU
FEEl=ALOG( (B1HO+DNEW(I,11)#E1N/2.25E4201/CU
FEE2=ALOG((B2EL+DPEW(I .JMZT))*E2P/2.25F+20)/QU
QI=VC(I)
OQ1=AES(1.0+Q1/FECJ)
OFIVE=G5/BIP(I)
IF(QFIVE-0.0005) 702,701,701
CPRI= CCJZ*SORT(1.O+QFIVEI
GO TO 703
CPRI=CCJZ
703 CCJ(I)=CPRI/SGRT(001)
    Ol=VE(!)
    QQI=ABS(1.0-01/FEEI)
    CEMI(I)=CEMIL/SGRT(QOI
    CEMI(I)=CEMIL/SCRT(QOI
    Jl=CJV(I)
    OQ1=AUS(1.0-01/FEEZ)
    CEM(I)=CEM2/SORT(001)
    CJC2(I) = (OPEW(I,2)-DPEW(I,1)) #CJM2
    CJC(I)=(DNEW{1,JM1)-DNEW(I,JMT))#CJM!
    CCl=CJC(1) +CC1
    C2=CC2+CJC2(I
    VT(!)=VE[!]
    CJVTII!=CJVII)
    WRITE (3,1 307) TNI (NIX),TP2(NIX)
    CC=CCl+CC2
    OLTI =-(CC 1O+CC7) #R EX + 
    00 501 I=1,IM
5`! VCT(II=VOLTI+FY(I)-VE(I)-CJV(I)
```

```
    CALL ElASI (MMLE)
    IF (MMAX-MAX)6,751,751
r
?50
IF (CCI-0.75E-04) 489.32.32
    IF (CCI-0.75E-04)
    INT=1
    LINT=1
    CN
    CCl=0.0
    CC2=0.0
    DO 402 1=1.IM
    TEMP{I}=0.OD+00
    CJC2(I)=(UPEW(I,2)-OPEW(I,1)) #CJM2
    CJC(I)=(DNEW(I,JMI)-DNEW(I,JMT)|*CJMI
    CCI=CJC(I)+CCI
    CC2=CC2+CJC2(I)
    CC=CC1+CC2
    VOLT2 =-{CCZU+CC1)*REX +E
    00 401 I=1.IM
    VCT(I) =VOLTZ+EY(II-VE(I)-CJVII)
    CLOS=0.02*CGES
    MFIRS=-1
    CALL BIA52 (MMLEE2)
    IF (MMAX-MAX) 450.751,751
    CC20=CC2
    CC2O=CC2
    F (NOUT2-NRUNZ) 466,466,467
    WRITE (3.1431)
    WKITE (3,1340) (AJ(I),EJC(I),CJC2(I),CJC(I),VC(I),CJV(I),EX(I)
    LEY(I),I=1,IM)
    WRITE (3,1307) EYIJ (NIX,I), EYIJ(NIX,JM2T)
c
C&7 IF (NCJ) 468,468,480
    CALC NEW VALUE OF BICPP ANC B2CPP
49n CINC=ABS(CC-COLDI
    B2CPP=CINC/CGES
    IF (82CPP-0.01*CFTR) 491,481,482
    BTCPP=CFTR
    H1CPP= B2CPP
    WK[TE (3.1307) CINC.B1CPP, E2CPP
    CALL ITER2(IT2)
    CONTINUE
    IF (LTIME) 750,750,490
    CALL TCALC(NTIME)
    FORMAT (1714)
    FURMAT (: 1.2714)
    FORMAT (5E13.5)
    FORMAT (5E13.5)
    FORmAT (3E13,5)
    FIRMAT %C!:S.
    FURMAT (5015%13.5)
    FQRMAT (5015.8)
    FURMAT (* ',5015.8)
    FOKMAT (3015.8)
1327 FORMAT (3015.8)
1337 FURMAT (* *GE15.8)
1340 FORMAT 1', 1,2013.6
352 FOKMAT (5E15.8)
1353 FGRMAT (" ',5E15.8)
```

```
1954 FORMAT (D15.8,4F15.81
```



```
18X,5HVC(I),7X,GHCJV(I),8X,5HEX(I),8X,5HFY(II)
```



```
IATIUN * * * * * * *)
    CuNTINUE
        HRITE (2.1352) ((ONEN(I,J),I=1,IM),J=1,JMT)
        WRITE (2.1352) (IDPEW(I,J),I=1,IM).J=1,JM2T)
        WRITE (?,1325) (VE(I),VC(I),CJV(I),BULKI(I), BULK2(I),I=1,[M)
        WRITE (2,1354) (AJII),EX(I),EY(I),RB(I),RHO2(I),1=1,[M]
    WRITE (2,1300) IVK,NCT 2,NCJ,NVCNX,ITI,IT2
    KRITE (2.1352) TRC,TIME,TIM2,CC1O,CC2D,CGES,BICPP,B2CPD,CC,OT, IT 2
    STOP
    ENO
    SUBROUTINE bIASI(mMLE)
    DUUBLE PRECISION EIC(20), CCC(20), VE(20),VT(20),VC1201,VCT(20).
    1TEMP(20),EJC(20), AJ(20),CJV(20),CJVT(20), CJC(20), CJC2(2U),
    2TEFF(2O),TON(2O),TDP(20),BULKL(20),BULK2I7O),BICH,B2CH,DUMY
    DUUBLE PRECISION TCJ(20),TCJ2(20)
    COMMON ELC,CCC,VE,VT,VC,VCT,TEMP,EJC,AJ,CJV,CJVT,CJC,CJC, ,TEFF.
    ITON,TOP,BULXI, BULK2,B1CH,B2CH,DUMY, DNEW(20,20), DP EW(20,2)),
    2EYIJ(20.20)
    CLIMMON G(20),A1(20), 61(20),Cl(20),TN1(20),TO2(20),
    1A(20),B(20),C(20),BM(20),BMI(20),H(20),R(20),Z(?O), EX(20),FY(20).
    ZRH(20),BP(20),B2N(20),B1P(20),PC(12),PIC(12),
    3TM(12), RHO2(20),CCJ(20),CEM(20),CEMI(20),VORDP(20)
    4BN(2O),B1W,B2W,EL,D,XN,YN1,YN2,OIFN,DIFP,S,TAU,TAUP,UN,UP,CLOS2
    CGMMON FREAL,CJM1,CJM2,CJM3,CM1,CM3,ARI,AR2,CC,CC1,C.C2,CCDR,REX.
    1OU,CLOS,TRC,E,BI,FBZ,OT,DT2,TIME,TIM2,RTIME,CDLU,CINC,DON1,DOP 2,
    2ALPH, OLN,DLP,EE,E2EF,RHO,RH2,EIEF,E2W,E1W,CFTR,CFTZ,CKON,TMAX.
    STMAX2,CP2,CPP, VNIX, TGATE,EXM,EYM,REM,REMI,GOQO,RRR,RRRZ,EP,EZN,
    4E2P,EIN,XI,Y1I,Y2I,AL,RBI,RTR,CCIO,CGES,B1CPD,B2CPP,CZENI,CZERI
    COMMON IM, JMI,JM2,IMI2,JMI2,IS,JM2T,JMT,NTMZ,NNN, KK,KKM,NIX,
    INSE,NCTT,NCJ,NVCNX,IVK,MAX,IC,JC,IC2,JC2,JJEZ, YPC,NTM,NOUT,NOIJT?,
    2NSTP,NT,NOFF,NSTT,MMAX,LVC,MFIRS,NIT1,NIT2,NCLOS,MCLOS,NRUN,NRISN:,
    3NH2
    DOUBLE PRECISICN CHIP,DB,DREAL,DCCR,TCCI,TCC2,TCC,CEIC,CCJI,OU31,
    CEIEF,GIR,TTI,TTZ,TT3,TTDP,CINC,GDIF,GORD,TOT,GMIN,SAVE,
    2EIOC,TICD,EIRC,DU
    DU=OU
    OH=BI
    TCCI=0.00+00
    TCC2=0.0n+00
    OL=1.601864E-19#ARI*YII
    On 2 1=1.IM
    TCJ(I)=CJC(I)
    TCJ2(I)=CJC2(I)
    TDN(I) =ONEW(I,JMT)
    TOP (1)=DPEM(1,1)
    TEMP(II=DNEW(I,l)
    TCC1=TCJ\1)+TCC!
    TCC2=TCJ2(I)+TCC2
    00=0.0
    DII 3 J=2.JMI
    00=DNEW(I,N)+CC
    TEFF(I)=00*OQ/TNIII)
    TCC=TCCl+TCC2
    DNEAL = FREAL*DT *2. O*NNN
    ONEAL=FREAL*
    ON 142 MLE=1,MMLE
```

[^0][^1]```
O5 CONTINUE
 WRITE (3.1442) MM,GDIF.OINC,DUMY,VFSNIX
 IF (NOFF) \(211,211,63\)
 If (NCFF) 211,211
IF (I-11 \(41,41,49\)
 IF (VFI) \(-V E(2)) 42,49.49\)
 IF (VF(1)-VE(2)) \(42.49,4\)
 IF (VEII) 49.63 .63
 DU \(40 \quad \mathrm{~N}=1\),
 \(T E M P(N)=0.0\)
 \(E \mid C(N)=(T E M P(N)-O N E W(N, 2)) \neq C J M 1\)
 \(C C(N)=0.0\)
 \(V E(N)=0.0\)
 WRITE \((3.1300)\) I
 QO \(1111=1 \mathrm{~S}, \mathrm{I}\)
 VE(I) V VE(NIX)
 IF (NCJ) \(108,108,69\)
 IF (MFIRS) \(68,69,69\)
 If (VC(LVE) 69.69.145
 TCCl=0.00 +00
 \(T C C 2=0.00+00\)
 \(0014 \mathrm{C} \quad 1=1.1 \mathrm{M}\)
 TCCInTCCI+TCJ(T)
 TCC2 \(=\) TCC2+TCJ2 (I)
 TCC \(=T C C 1+T C C 2\)
 COIM=ABSICOIF
 IF (COIN-CLOS) 112,114.114
 IF \(C\) CLIN-C
CLUS=CDIM
 GKUN= VE(LVC) +CJVILVC
 IF (COIM-CFTP*CGES) 145.72 .72
 F (NVCNXI 121
 IF (VC(LVC)+0.375) 120.119 .119
 IF (VE(LVC)40.375) 120.119.119
 CGES=TCC
 GIJ TO LCZ
 IF (MFIRS) 73,7R.76
MFIRS=0
 MFIKS=0
 IF (CKUN) 117,115,117
 CKUN= VE(LVC) + CJV (LVC)
 CLOS=CDIM
 OELT=A1CPP*CGFS
 (F (CUIF) 74.145.71
 DELT=-CELT
 GU 7071
 (F (COIO\#CDIF) 77,78,78
 IF (MFIRS) 73.77.75
 DELT=0.5 \& DELT
 GU TO 7:
 MFIRS =i
 UヒLT \(=-0.50\) *DELT
 GES×CGES+DELT
 CDIU=CDIf
 QO=EY(LVC) +E-CKON-C
 UTEEXP(-QU*OO)-1,0
```



```
 22=(ONEW(LVC,JMI)-BN(LVC)*OO1)*CJM1
 F (MFINS) \(141,141,142\)
 F (MFIKS) 137,137.139
 IF (DELTI 71,751,139
 UELT=0.5*DELT
 CGESICGFS-DELT
WRITE (3.1337) CGES
 WRITE \((3,133\)
 If (MMAX-MAX) 138,751,751
```

```
75 RETIRN
162 CONTINUF
NI XL=NIX
 ON 47 i=1,NIX
 7 ONEW(T,1)=TEMP(I)
 OC 160 I=1.IM
 CJC(1)=TEJO
 cJC2(1)=10J2(I)
 ONEW(1,JMT)=TUN(I)
 DPEm(1,1)=TUP(I)
 CCL=TCC1
 CC2=TCt2
 CC= TCC
 NC J=0
 IF (VC(LVCI) 146,146,149
 NC.J=1
 NVCNX =0
 If (VC(lVC)+0.375) 150.151.15i
 NVCNX=1
S1 HRITE (3,1443) MLE,CC,CGES,COIF,CLES,DELT
 H1OR=BI+CC2
43 WRITE (3,1430) VC(LVC)
144 WKITE (3,1319) (.C1,CC2,CC
 TOT=CCJ1+CEIC CEE EF +DOB1+C CMB
 WRITE (3.1446) CCJ1,CEIC,CEIEF,DOBI.CNMB,TCT,BIDR
 IF (NOUT-NRUN) 466,460,467
 HRITE (3.1429)
 WRITE (3.1321) (CCC(I),EIC(I),CJC(I),VEII),VCITI,RR(II,RHOP(II.
 ICEM(I),CCJ(1).CFM1(I),I=1,IM)
 1) FURMAT {17{4}
O7
;114 FLIMMAT (0 1,5HCC]=,E!4.0.5H CC2=,E14.6,LHCC=,EI4.0)
i321 FUMMAT i',OU13.6.EE13.6,2O13.6.5E11.4)
1337 FUMMAT (: .,OE15.91
```




```
 15HVC(11,7X,5HFH111,5x,7MAHD2(1),4X,6HCHM(1),4x,4HC,J11).6X,
```



```
 1\cap23.16,FH VE(NIX)=,D23.16)
1%30 FIJMAT (: '.' VC(NIX) IS NEGATIVF ',DI5.PI
144* FIKMAT (: ',5HMLE=,13,SEIC.7)
```




```
 1: SINOLIED='.EI5.RI
:50N F:GMAT (I,?DI5.8)
4&.7
 RFTURN
 Evo
 Subroutine ITERIIITII
 OIMFNSIUN IB1(20.20).LCI(2C1.LC2(2.)1,LRI(20).LRO(2M)
 UNUSLF PPECISICN FIC(20), (CC(70),VE(20),VT(20),VC(20),VCT(2'M).
 (TEMP(20),EJC(20),AJ{20).CJVI20),t.JVT (20:,CJCl?01.CJC2(20).
```



```
 CUMMON EIC.CCC,VF,VT,VC,VCT,TEMD,FJC,AJ,CJV,CJVI,CJC.F.JC`,TEFt,
```



```
 <EYIJ(2O,2O)
 CLIMMCN ©(23), A1(20),B1(20),Cl(20),TN1120),TP217M).
 14(20),8(20),C(20),BM(z0),8M1(20),H(70),R(20),7(?!), tX(20),6Y(?),
 \angleRB(20), BP(20), E2N(20),BIP(20), PC (12),PIC(:2).
 STY(22),RHO2()G1,CCJ(20),CEM(2O),CEM1(2G),VOROP(ON).
```




```
 IQU.CLCS,TRCFE.BI,FBZ,OT,OTZ.TIME.TIM2.DTIME,COLO,CINC,DJYI.DOP%.
```

```
 ZALPH,DLN,OLP,FE,E2EF,RHO,RH2,E1EF,E2W,EIN,CFTR,CFT2,CKON,TMAX,
 STMAX2,CP2, CPP, VNIX, TGATE,EXM,EYM,REM,KEM1,OOOO, RRR, RRH2,EP,E2N,
 4E2P,EIN,XI,YIT,Y2I,AL,RBI,RTR,CCIN,CGES,B1CPP, B2CPP,C EERI,C ZERI
 CCMMUN IN, JMI,JMZ,IMI2,JMI2,IS,JM2T,JMT,NTM2,NNN, KK,KKM,NIX,
 NSE,NCT2,NCJ,NYCNX, IVK, MAX,IC,JC,IC2,JC2, JJE2, MPL,NTH,NUUT,NOUT2,
 ZNSTP,NT,NIFF,NSIT,MMAX,LVC,MFIRS,NITI,NIT 2,NCL OS,MCLOS,NRUN,NRUNS.
 3NB2
 IF(NITI) 1000.!0CU.1005
 N!TI=1
 REAU (1,1308) (1I81(1,J),1=1,IM),J=1,JM1)
 WR!TE (3.1309) (|IE!(1,J),1=1,14),J=1,JMI)
```



```
 READ (1,1310) (LCI(J),LC2(J),J=1,JM1)
 WKITE (3,1311) (LC1(J),LC2(J),J=1.JMI)
 MRITE (3,131)) (LRI(I)
 NITE (3,131I) (LRI(I),LR2(I),I=1,IM)
 Ox=1.0
 OYl=BIW/EL/YNI
 QQ*U. 5*DYL
 OU1=0.5*DX
 041=0C*001
 HAl=2.0*OA!
 TAI=2.0*HA1
 Sl=U01*S/DIFN
 S2= S1
 S 3=00*S/DIFN
 S4=53
 YUX=00/0x
 XOY=061/0Y1
 AMB =EL*FL/TAU/DIFN
 EANL=AMR*OAL
 ENN?=AMK*HA!
 ENN3= AMR#TAL
 OT I=1.O/DT
 EMMI= ITI*OAI
 EMMI=ETI*OAL
```



```
 EMME=TTI**TAI
 REGIN SASEI Y-ITERATIIIN
 REGIN SAS
 HRITE (3.1324) ITI
 DUNI = CNEW(IC,JC)
 OUNI=CNEWIIC,JC
 Orj 100E 1=1.IM
 001=0.0
 00 1007 J=2.JM1
1007 UWI=UWI-RNEW(I.J)
1VO6 BINLKI(!)=001
 00 1150 i=1.1M
 L3=LRI(t)
 L4天LKこ(1)
 L~x!-!
 IT=I+!
c. CALC valueS of G for I TH CClumN
 ON 1114 J=L3.l4
1114 G(J)=DNEW(I,J)/(DNFW(I,J)+BIP(I))+!.0
 00 1150 J=L3.L4
 JL=J-1
 JI=J+1
 AI(J)=0.0
 BM!(J)=1).0
 Cl(J)=.0.0
 H(J)=0.0
```

```
 \ SB=18l(I,J)
 G1) TO 1201,201,NU1,204,204,200,207,207,210,210,2101.1aB
 <,! QN1=2.0*G(J)*YCX
 Al(J)=G(J)*xOY
 Cl\J!=「(J)*xor
 OGL=UCI-FMM2+S3+53
 Mi(J)=A1(J)+C!(J)+EMM? +ENN2
 H(J)=-J山4&DNEW(I,J)+WU!#DNFW(IT,J)
 IF (IBB-2) 115C.112L,1124
1,? H(J)=Cl(J) ODNEW(I,JT)+H(J)
 Gत Tח 1150
 H(J)=AI(J)*DNEW(!.JL)+H(J)
 H(J)=A1\J)
 OO1=2.O*G(J)%YCX
 Al(J)=心(J)कxGY
 A1(J)=G(J)*XGY
 CI(JJ)=G(J)#XGY
 RMI(J)=AI(J)+CI(J)+FMM2 +ENN%
 H(J)=40! कDNEW(IL,N)-0WG*DNEW(1,J)
 IF (IRR-5) 1150.1127,1150
I27 H(J)=Cl(J) &ONEW(I,JT)+H(J)
GU T0 1150
Jh UNl=G(J)*YロX
 CI(J)=G(J)㿟ur
 0144 =001-FMMI +S3
 BMI(J)=CI(J)+EMMI +ENNI +S2
 H(J)=QOL*ONEW(IL,J)-QO4*DNEW(II,J)
 GU TO 1150
O7 QQL=G(J)#YOX
 OU2=001
 CI(J)=2.0%G(J)*xOY
 OC4=OC1+OQ2-EMM2
 UO4 =QC1+QQ2-FMM2
 *)
 H(J)=0Q! #DNEW(IL,J)-QO4*DNEW(I,J)+OQ2*ONFW(IT,J)
 Gu TO 1150
 QOL=2.D*G(J)* YOX
 OCL=001
 Al(J)=2.0*G(J)*XOY
 CI(J)=A!(J)
 OUS=QO:+OQ2-FMMB
 BMI(J)=A1(J)+Cl(J)+ENN3+EMN-
 H(J!=0UL*ONEW(IL,J)-QOS*UNFW\IFJI*OOT*ONFWIIT,J)
 IF (IEB-10) 1130,1150,1132
|m,H(J)=AI(J)*DNEW{[,JL)+H(J)
 Gu IU 1150
1:32 H(J)=Cl:J)%DNEW(I.JT)+H(J)
 CUNTINUE
 KI=L 3+1
 QU=1.0/BMI (L3)
 R(L3)=C1(L3)*00
 U1J2=0.0
 Z(L3)=00*H(L3)
 (1) 1151 K=K1.M
 OU=1.O/(-R(K-1)*A)(K)+RMI(K))
 R(K)=C1(K) #QO
 *(K)=C(K)*Q
 JM2=Al(K)*QO
 Z(K)=CG*H(K)+CO2*7(K-1)
 ONEW(1,L4)=2(し4)
 JJJ=L4-1
 0n 11&57 JJ=Lき.JJJ
 J=JJJ +L3-JJ
```

[^2]```
        g=1.0f(-R(K-1)*A(K)+8(K))
        H(K)=C(K)*00
        402*A(K)=00
        Z(K)=60*H(K)+002*Z(K-1)
        UNEW(L2,J)=Z(1)
        IIIxL2-:
        011193 11
    !=!!!+L!-!!
    UNEM(I.J)=R(I)*DNEW(I + 1, J) +T
    IF (NCUT-NR(IN) 466,466,1190
    IF (NCUT-NR(IN) 466,466,1IQ0
406 WRITE (3,1336) JITCNEWII
    IGTPUT GTR JCT VALUES
1192 WRITE (3,1336) JMT,(DNEW(I,JMT),I=1,IM)
1190 CINTINUE
    END OF X-ITERATION FDR BASFI
    OO 1194 I=1.1m
    QQ1=0.0
    O0 1103 J=2,JM1
1193 001=DNEW(!.J)40日!
1104 BULKI(II=BULKIII)+QQI
    TIME=TIME+2.0*CT
    GTIME=FREAL#TIMF
    WRITE (3.1341) DT,TIME,RTIME
1308 FURMAT (10:3)
1309 FLRMAT (' '.
1310 FURMAT (213)
1311 FORMAT (0.,213)
1334 FORMAT (" :2IHBASE 1 ITERATICN NO .I?)
1336 FURMAT {.,13/(', SFI4.6)!
341 FUKMAT I* *,5H DT=,E14.6.i3H TOTAL TIME=,E!4.0.17H TUTAL REAL TI
1MEx,E15.B)
    RETURN
    END
    SUG&OUUTINE RIASZ(MMLEZ)
    DNUBLF PRFCISICN EIC(20),CCC(20),VF(20),VY(20),VC(20), VCT(20),
    1TEMP(20), EJC(20), AJ(20),CJV(20),CJVT(2(1),CJC(?O),CJC2(20),
    2TEFFF(20).TON(20). TDP(20), BULKI(20),BULK2(?O), B1CH, BTCH, DIMM
    BIJULLE PRECISIEN ORHNZ(2D),PEMP(20)
    CCMMON FIC,CC.C,VE,VI,VC,VCT,TFMP,EJC,AJ,CJV,CJVT,CJC,CJC*,TEFF,
    ITUN,TDP,RULKI, BULK2,B1CH,B2CH,OUMY,DNFW(29,20),DPEFW(2n,?.7),
    2EYIJ(20,2C)
    CGMMUN G(20),A1(20), B1(20),C1(20),TNI\<01,TP2(20),
    IA(20), &(20),C(20),RM(20),RM1(20),H(20),R(20),Z(20),E゙X(20),EY(2)).
    CRB(20),RP(20),B2N(20),B1P(20),PC(17),PIC(12).
    3TM(12),RHO2(20),CCJ(20),CEM(20),CEMI(7C),VDROP(20),
    4&N(2O),B1W,B2W,EL,N,XN,YNI,YN2,WIFN,OIFP,S,TAU,TAUP,IIN,U:T,CLOST
    CIMMMON FREAL,CJM1,CJM2,CJM 3, CM1, CM3,AF1,AR2,CC,CC1,CC2, CCUR,FFX,
    LQU,CLCS,TRC,E,PI,FBZ,DT,OT 2,TIME,TIMP, PTIMF,COLT,CINC,DDN1, DOO%,
    ZALPH,DLN,DLP,EE,FTFF,KHO,RHZ,EIFF,H2W,FIW,CFTR,CFTT,CKON, ,MAY
    2ALPH,DLN,DLP,EE,EREF,RHO,RHR,EIFFF,TLW,FIW,CFR,CFF, CKON, TMAX,
    3TMAX2,CP2, CPP,VNIX,TGATE,EXM,FYM, RFM,REM1, OQQA,RRR,RRK2,FP,FZN,
```



```
    COMMON IM, JMI,JM2,IMIL.JMI2,IS,JM>T,JMT,NTM2,NNN,KK,KKM,NIX,
    1NSE,NCT2,NCJ,NVCNX,IVK,MAX,IC,JC,IT,I,JC2,JJE2,MPC,NTM,NIIHT,NUUTT,
    ZNSTP,NT,NOFF,NSTT,MMAX,LVC,MFIRS,NITI,NITY.NCLCS,MCLIS,NRUN,NFINI?.
    3NB2
    OUUBLE PRECISICN CCCJ,CCEM,CAJ,CCOB,DRC,OO1,QO2.003,OR,CLEI.
    IRUNT, OELL,OLDP,EDC,TCD,ERC,NEMP,CHUP,OD5,RCB,COMB2,OZ,ULZ,OOK, JOT,
    ZOCAP,RLZ,DU
    DU=0U
    QZ=1.06C1864E-19*ARI*Y2I
```

```
    TREA2xFREAL*ПT2#2.0
    UCAD=AR1/TREAZ
    QL2=QZ/TREAZ
    000=-FB2#EYIJ (I, JM2T)+CJMZ
    QQ7=CJM2 *DPEW (1,JM2)
    vO 51 I=1,IM
    URHOZ(II=RTR*RHMZII)
    PGMD(I)=DPEW(I,JM2T)
    TFMP(IIEOPEN(I,JH2T)
    OU=0.0
    O bo J=2;JM2
    OJ=UP FW(I,J)+QQ
    TEFF(I)=QG*QZ/TPZ(I
    OK=TRC
    MFIKS =-1
    DO 442 MLE=1.MMLF2
    MMAX=0
    CJV(KKM)=0.0
    NFIPS=-1
    IF (NCJ) 73,73,70
    If (VC(LVC)+0.375) 72,71,71
    G+S=CC
    CG:S=CGES*REX
    CCLR=CGFS
    COR=CC*RE
    COR=CCFRFX
    OS=E-CCDR
    100 mm= 1.MAX
    JMR2=0.00+00
    F (NSFI 158.159,81
    TMP(1)=DRC
    CJV(1)=(DLOG(TEMP(1)/BP(1)+1.00+00))/DU
```



```
    VC(1)=005+EY(I)-VE(1)-C.JVII)
    1F (NCJ) 202.2C?,201
    (1)=UEXP(-0U*VC(1)1-1.00+00
    DP!W(1,1)=8P(1)*00
    NN[W(I,JMT)=BN(I)*UO
    CJC2(1)=(DPEW(1.2)-DPEW(1,1))*[JM?
    CJC(1)E(DNEW(1.JM1)-DNFWII,J4T)|*CJM
    AJ(L) =CM3* TEMP(l)/力P(1)
    EUC=(CABS(EJC(1))+AJ(1))/AR)
    IF (ECC-CLERO) 40.41.41
DEMP=UABS (EOC)
TCD=OSORY(CZFFOHDHMD)
ERC=(TCU-EDC)*AR!
G1) In 42
- ERC=0.00+00
4) CDOB=(IEMP{1)-PR4P(I)+BULK2(1))$0Z)
KK=?
CAJ=AJ(l)
CAJ=AJ(l)
CCCJ=(VCT(1)-VC(1))*DCAP*rCJ(1)
CCEM= (CJV(1)-CJVT(1)) #DCAP*CEM(I)
CIMM2=TEMP(1)#OZ/TH2(I)+TEFF(1)
RUNT=CCCJ+CCEM+COOH+CNJ+CONH2-CJC!!!
SEC=0.0
B2RR=U.O
0n 521 l=1, NIX
521 R2UR:CJC(I)+H2OR
P: GUTO 159
```


GU TO 509

CDOB- $042+C O 96$
903: (VCT (II-VCII) \& DCA P*CCJII)
CCCJaco3+CCCJ
CJ(I)=AJII)4EPC
CAJ=AJ(I) +CAJ
RCB=TEMP (!) \#OZ/TO2(I)+TEFF(I)
COMAZ $=R C 8+C U M B 2$
$91=501+002+003+4 J(1)+R C B-5 J C(I)$
IF INTX-1) 86, 88, 86
CLEI=RUNT+QO
CLEIERUNT+QO
CONTINUE
IF (DABS(RUNT)-82CH*CC1) 105,105,108
If (DABS(RUNT)-82CH
IFINFIRS) $90,92,92$
(FINFIRS) $90,92,92$
FIRS =0
HOP= 1,00 $\$ 00$
IF (RUNT) 94.105.91
CHOP: -1.00400
GO TO 94
(F (OLOR*RUNT) $95,93,93$
IF(NFIRS) $94,94.96$
ELLECPZDRC
GO TO 96
NFIRS=1
HOP=0.5D+00
OELL=-DELL
(F (RUNT) 99.89.89
(F (DABS(DELL)-0.10-14*DRC) 105,89,89
OELL=CHOP*DELL
OLDR= RUNT ORC=DELL+OR
CUNTINUE
RITE (3,1444) MH.RUNT,CLEI,DRC,DELL,CJV(1)
If (NOFF) 602.602.600

IF (CJV(NIX)-CJV(LI) 602.602.601
CJV(NIX) CJV(L)
QD=DEXP (DU\#CJV(NIX))-1.00 400
TEMP (NIXI=BP(NIX) *OD
to2 DO 106 IsI.IM
106 DPEW(I, JAN2T)=TEMP (I)
IF (NCJ) 405,405,409
IF (MFIRS) $406,409,409$
406 IF IVCILVCII $409,409,458$
$409 \quad C C 1=0.0$
DO 440 Im 1.1 M
CCI=CJC(I) +CCI
$440 \quad$ CC2FCJC2 (I) + CC2
CC=CC1+CC2
COIF=CC-CGES COIM=ARS(CDIF) IF ICOIM-CLOS21412.310.310
CLUS2=CDIM
CKCN=VE(LVC) +CJV (LVC)

416 IF (NVCNX) $417,417,420$
417 IF (VCILVC) +0.375) $420,418,418$
CGES=CC

```
    GU TO 442
420 IF (MFIRS) 421,430,430
MFIRS=0
IF (CKON) 428,4?6,428
CXCNEVE(LVC)+CJVILVC)
CLUS2=CDIM
OELT=82CPP*CGES
IF (CCIF) 423,455,4.36
DELT=-DEL
GO TO 436
IF (CDIU*COIF) 433,431,431
IF (MFIRS) 421,421,435
DELT=0.5*DELT
GO TO 436
MFIHS=1
DELT=-0.50*OELT
CGGES=CGES+DELT
    CulO=COIF
    OD=EY(LVC)+E-CKUN-CGES*REX
    UQ1=EXP(-GU##0)-1.0
    HO2=(CNEW(LVC, JMI)-BN(LVC)*OO1)*CJMI
    IF (002) 441,441,442
    IF (MFIRS) 443,443.445
    IF (OELT) 436,751,445
443 IF (OELT) 436
    WRITE (3,1338) YLE,CGES,DELT
    CGFS=CGES-DELT
    WRITE (3.1337) CGFS
    mmax= MrAXtI
    IF (MMAX-MAX) 438,751,751
75, RETURN
Cuntinue
4% NCJ=0
IF (VC(LVC)) 458.458,459
    NCJ=1
    NVCNX=O
    IF (VE(LVC)+0.375) 475,476,476
    IF (VCCL
475
76 WRITE (3,1443) MLF,CC.CGES,COIF,CLOS2.TELT
    WRITE (3,1443) MLE,CC
    B?DR*CC1
    GO TO 482
    B2OK=CCL-5CC
402 WRITE (3,1430) VC(LVC)
    WRITE (3,1320) CC1,CC2,CC,VDROP(NIX)
    IF (NSE) 490,450,4<1
    UN=C.CCJ+CCEM+CAJ +CCOB+COMB 2
    GO Tn 49?
401 UD=CCCS+CCEM+CAJ+CDQB+CIRC+CCMB?
492 TNC=DOC
    WRITE (3.1440) CCCJ.CCFM,CAJ.CDOH,ORC
    WKITE (3,1441) COME2,OD,B?ER
1350 FURMAT (: P.3015.8)
1320 FORMAT | ,'5H CCl=,E14.6,5H CC2=,F14.6,4H CC=,5l<.6.
    122H AN-TO-CATH VOLT DKOP=,E14.6)
1337 FUKMAT (! '.6E15.8)
1430 FORMAT (" ',' VC(NIX) IS NEGATIVE ,.DI5.g)
1338 FURMAT (, !14,2EIS.8)
1440 FORMAT (% ,OOHCCCJ=,014.6,6H CCEM=,0!4.6.5H CAJ=,014.A.5H (.OO3=,1)
    114.6,5H DRC=,014.6)
```

```
144: FUQMAT (", ', PASE 2 RFCOMRL',EI4.K,' BASE 2 ORIVE NEEOED=',D:5.A,
    1: SUPPLIED=',F15.81
1442 F!KMAT (',.5FMLE=,!E,5F14.71
```



```
    1D73.10.' DELL='.0>3.10.1,'(JV(1)=0,U\3.16)
        RETURN
        ENR
        SUBROUTINE ITER2(ITZ)
        DIMENSION IB2(20.20),LCCI(?O).LCC2(20),LRRI(20),1RR2(?O)
        OIMENSIUN AlI(20),C11(20),SCJL(20,20),SCJT(70,20)
        UIUUBLE PRECISION ElC(70),CCC(20),VE(20),VT(7O),VC(20),VC,T(20).
        !TFMP(20), EJC(20), AJ(20),CJV(20),CJVT(7O),CJCC(20),CJC2(2U),
        IT&FF(>O),TON(2O),TOP(2U),BULKI(2UI,BULK2(2U),BICH,B2CH,DI'MY
        CIMMGNN EIC,CCC,VE,VT,VC,VCT,TEMP,EJC,AJ,CJV,CJVT,CJC,CJC?,TEFF,
```



```
        LEYIJ(20,20)
    LLMMONG(20), A1(20),HI(20),C1(20),TN1(?0),TP2(20).
    1A(20),B(20),C(20),HM(20), BML(20),H(20),R(20),Z(20),EX(2), EY(20),
    \angleRB(20),AP(20), R2N(20), B1P(20),PC(12),PIC(12),
    ZTM(12),RHO2(20),CCJ(2O),CEN(2O), CEMI (TO), VOROP (?O).
    4BNI2OI,BIW,B2W,EL, D, XN,YNI,YN2,DIFN, DIFP,S,TAU,TAUP, UN,UO,CLOS?
        CCMMON FREAL,CJM1,CJM2,CJM3,CM1,CM3, AR I,AZ2,CC,CCI,CC?,CCOR,REX,
        IQU,CLOS,TRC,E,EI,FAZ,DT,DTZ.TIME,TIMZ,RTIME,COLD,CINC,ODNI,DDP?.
    2ALDH, CLN,DLP,FF,EZEF,KHO,RH2,EIEF,E2W,EIW,CFTR,CFTZ,CKON, TMAX.
    STMAX2, CP2, CPP, YNIX,TGATE,EXM,EYM,REM,HFM1,OOOO,HRR,FRKR2,&P,EZN
    GE 2P,EIN,XI,YII,YZI,AL,RBI,RTR,CCIO,CGES,BICPP,BZCPP,CTERI,CZEKII
    C OMMON IM, JMI,JM2,IMI2,JMI 2,IS,JMZT,JMT,NTMZ,NNN, KK,KKM,NIX,
    INSE,NCYZ,NCJ,NVCNX, IVK,MAX,IC,JC,IC2,JC2,JJE2,MPC,NTM,NIIIT,NUUTP,
    NSTP,NT,NOFF,NSTT,MMAX,LVC,MFIRS,NIT1,NIT 2,NCLOS,MCLOS,NRUN,NR UNT,
    NR2
        IF (NITZ) 60O,ESO,605
        NIT2=1
        REAO (1,1308) ((182(I,J),I =1, [M),J=1,JM2)
        WRITE (3,1309) ((IB2(I,J),I=1,IM),J=1,JMZ)
        KrAU (I.1310) (LCCI(J).LCC2(J),J=JMI2;Jm2)
        WRITE (3,1311) (LCCI(J),LCCE(J),J=JMI2,JMZ)
        KEAN (1,13IO) (IRRI(I),LRRRIII,I=IMI2,IM)
        WRITE (3,131I) (LRKI(I),LRRE(I),I=IMI2,IM)
        OX=1.0/XN
        DY2=R2W/EL/YN2
        AMBI=EL*EL/TP2(NIX)/CIFP
        AMBL=EL*EL/TP2(NI
        00= 5 5 #VY2
        001=.5#DX
        XAM2=CO1 #AMB2
        YAM2=00*AMB2
        XAM4=0.5#XAM2
        YAM4=0.5 FYAM7
        S21=001*S/DIFP
        S22=S21
        S23=00*S/DIFP
        S24=523
        TS23=2.0*S23
        Yux2=00/OX
        XOYZ=001/0Y2
        TYOX2=2.0#YOX2
        TXOY2=2.0*xOY2
        FYOXZ =4.0* YOX2
        FXOY2 = 4.0% XOY2
        OA=001 %00
        HA=2.0*OA
```

```
    1A=?.0*HA
    ENI=AMB1*QA
    EN2=AMBI#HA
    N3=AMB2*TA
    AT=DIFN/OIFD
    UT1?=1.0/0T2
        ATI=AT*UTI2
        FMl=ATI#OA
        EM2=ATI*HA
        EM3=ATI*TA
        1T2土!T2+1
        WRITE (3,1335) IT?
        OCDZxNOFH(IC2,JC7)
        01]607 I=1.IN
        401=0.0
        OC 60t J=2,JM2
GO6 UWI=001-UPEW(I.J)
GULK2(1)=001
IMM=IN-
UI OIFI=2.IMM
A!I(I)=(EX(I-1)+EX(I))=YAMa
CI:(I)=(EX(I)+EX(I+I))*YAMG
ON O15 J=2,JM2
DC 614 I=2.1Mm
SCJL(!,J)=(FYIJ(I,J)+EYIJ(I,J-1))#XAML
SCJT([!,J)={EY!J(!,J)+EY!J(I,J+!)]*x\DeltaM&
CUNTINUE
BEGIN Y ITERATIUN AT LEFT PUST CILIIMN
UH 660 IEIMIZ,IM
L3=LRR1(1)
L4=LRR2(I)
iL=I-]
| INIALIZE ANO CALG g.JEFF FOK COLUNN I
DC O5O J=L3.64
OC 6SO
A ( (J)=C.0
4!(J)=C.0
GMi(J)=0.0
H(J)=0:0
H(J)=%.0
RH2x[R2(1.J
G.) T0 (701,701,701,704,704,704,7!0,710,710.7:%.?10),17AO,
U01=TYCX2-C11(I)
AL(J)=0.5*SCJL(I,J)+XUYZ
C1(J)=-3.5*SCJT(1.J)+XOY2
NO4=(SCJT(I,J)-SCJI(I,J))&0.5+TYOX7+TSJZ-FM)
BM|(J)=(FX(IT)-EX(I))*YAMG +TXFY?+EMZ+FN2
H(J)=-004#DLEW(T,J)+001*CPEW(IT.J)
|F(1RB2-2) 650,622,024
H(J)=C1(J)*OP[h(I,JT)+H(J)
G0 TO 650
+24 H(J)=Al(J)*DPEM(I,JL)+H(J)
GO TM 650
704 GUL=TY(IX2+A11III
Al(J)=0.5*SCJL(1,J)+XOY2
C(IJ)=-0.5*SCJT(I,J)+XUY2
O4=(SCJT(I,J)-SCJL(I,J))*0.5 +TYOX2*TS;3-Emz
GM|(J)=(EX(I)-EX(IL))#YAM4 +TXOY2+EMZ+EN2
H(J)=C心1*DPEW(IL,J)-004*OP EW(I.J)
|F(IBHZ-5) 65C,t227,626
```

```
    S)7 H(J)=Cl(J)#DPEW(I,JT)+H(J)
        GOTOOSO
        H(J)=Al(J)*DPEW(I.JL)+H(J)
        G0 TO 050
        021=TYOX2-C11(I)
        CN2=TY(1)2+A11(1)
        Al(J)=SCJLII,J)+TXC:Y2
        Cl(J)=-SCJT(1,J)+TXCY2
        005=SCJT(I,J)-SC.JL(I.J)+FYOX2-EN?
        HM1(J)=C11(I)-A11 (I)+FXOY2 +E43 +EN3
        H(J)=OC2*DPEW(IL,J)-GQS*OHEW(I,J)+UOI*UPEW(IT,J)
        IF(IBH2-8) 65C,635,632
E32 IF(IB42-10) 633.650.635
033 H(J)=Al(J)*DPEW(I,JL)+H(J)
        G.J TO }55
nsh H(J)=CI(J)
65D CONTINUF
    Kl=L3+l
    UQ=1.019ML(13)
    K(L3)=Cl(L 3)*00
    QN2=0.0
    2(L3)=N0*H(L3)
    DO 652 K=K1,L4
    UW=1.0/(-R(K-1)*Al(K)+BMI (K))
    R(k)=Cl(k)*00
    0U2=Al(k)*00
651 2(k)=04*H(K)+002*Z(K-1)
    OPEW(L,L4)=2(L4)
        JJJ=L4-1
        Oก 657 JJ=L3.J」」
        J=JJJ+L3-JJ
6j7
O&O CUNTINUE
CSO TND UF Y ITERATION FOP BASE?
    ENDRT UF X
    START UF X ITERATION FOR BASE ?
    DS 690 J=JMI2,JM2
    Ll=LCCl(J)
    L2=LCC2(J)
    JL=J-1
```



```
    U心 o75 I=LI,L2
    IL=I-1
    1T=14!
    A(1)=0.0
    s(1)=0.0
    C(1)=0.0
    H(t)=0.0
    1BB?=142(1,J)
    GU TO (801,801,801,804,804,A04,810,810,810,81),810),1 382.
    C(I)= TYOX2-C11(1)
    002=SCJLII,J1*0.5+X\capY2
    QQ3=-SCJT(I,J)*O.b+XOY?
    B(1)=(SCJT(I,J)-SCJL(I,J))*0.5+TYOM2+TS23+EM2+ENS
    U.J4=(EX(IT)-EX(I)|#YAM4+TXCY2-EM)
    Gu4=(EXIIT
    G(Il=TYOX2+A11(1)
    OUT=SCJL(I,J)*C.54XTYZ
    OUT=SCJL(I,J)*C.5+XOY2
    UG3=-SC.JT(I,J)*0.S+XIYY2
    GO4=(EX(I)-EXIILI)*YAM4+TXCY2-EM?
```

```
3`5 H([)=CL2*DPEW(I.JL)-004*DPEW(I.J)+JO3*[PEW1],JT)
    GuT0 6.75
        A(I)=TY!\ X2+Al](I)
        C(11=TYMX2-C11 (I)
        COH=TXCIYZ+S5J1!
        ON3=TX[IY2+SCJL{!,J
```



```
        B(I)=SCJT(I,J)-SCJI(I,J)+FYOX2+EM3+FN:
        UUS=Cll(I)-A1I(I)+FXUYZ-EMZ
07! M(1)=UQ3*UPEW(I,JL)-QQS*OPFW(I.J)+004#nOFW(I.JT)
        IF(IBB2-R) 676.079,679
        lF(IBB2-R) 67L*O7G,67G
070 M(I)=C(I)*OPEW(IT,J)+H(I)
675 CINNIINUE
        K2=L1+1
        UU=1.0/H(LI)
        R(LI)=C(L1)*OC
        002=0.0
        Z(L1)=CO*H(LI)
        DO 67% K=K2,L2
        OO=1.C/(-R(K-1)*A(K)+B(K))
        R(K)=C(K)*OO
        (N2=A(K)*00
        Z(K)=06*H(K)+GCP*Z(K-1)
        DPEW(LC,J)=2(L2)
        I!f=\2-1
        0n 68? 11=
        UM6R3 I!=L!
        OPEW(!,J)=R(I)#OPFW(I+!,J)+2(!)
        It (NCUTZ-NRUNZ) 4EK,666,AGO
        QUTPUT CTR JCT UPFW VALUES
        GUTPUT CTR JCT UPFW
        JJ=1
        WITE (3,1336) JJ.(OPEW(I,1),I=1,IM)
674 WRITE (3,1336)J.(LPEW(I,J),IE1,IM)
        WRITE {3,1336} J.{LPEW{T,J),IE1.{M}
        If (J-JM2) 690,692,AO2
        WRITE (3,1336) JM2T.(NDEW(I,JM2TI,I=1,IM)
4Q? WRITE I3
O4O CUNTINUE 
        00 1001 I=1.1M
        001=0.0
        0) 1000 J=2.jM2
1)UN UNI=DPEW(I,J)+001
LUU1 BULK2(!)=BULK2(I)+W0!
    IF (NCJ) 1203.1203.1195
1203 CGES=CC
CalC anO punch tחtal time and itEhatIONS IN basf z
1175 TIM2=TI42+2.0*CTT2
    TIM2=TIM2+2.0*C.T2
        HITE (3.1341) DT2,TIM2,RTIMZ
        WRITE (3,1341) DT2,TIME,RTIMZ
    format (1013)
l30& FORMAT (1013)
1310 FURMAT (2I3)
1311 FOKMAT (! :213)
1335 FUNMAT (: '2IHBASF 2 ITERATION NU ,1:1
1236 FURMAT (1, ', \3/1' '.5F14.6)')
```



```
    LME=,E15.8)
    KFTURN
    EN!
    SUBRDLTINE TCALC(NT [ME)
    DUURLF PRECISICN FIC(20),CCC(20),VE(20),VT(7O),VC(Z0),VCT(20).
```

```
    LTFMP(20),EJC(20),AJ(20),CJV(20),CJVT(20),CJC(2O),CICZ(20),
```



```
    C JMMON FIC, CCC,VE,VT,VC,VCT,TFMD,EJC., J,CJV,CSVI,CJC,CJC,,TEFF,
```



```
    2EYlJ(2),20)
    CPMMON G(20),A1(20), B1(20), (1)(20),TN1(20),TPZ170)
```



```
    <2H(20),BP(20),B/N(20),R1P(20),PC(12),P1C(:2),
    3TM(12),RH(22(20),C(JI20),CEM(2O),CEMI(?n),VDRNP(?N),
    GBN(\angleO),NIW,B2W,FL,CH,XN,YN1,YN2,UIFN,OIFD,S,YAU,TAUN,IJN,IJ,CLUS
    CEMMON FREAL,CJMI,CJMZ,CJMH,CM1,CM3,AF1,&RZ,CC,CC1,CC7,CEDR,OEK
    UU,CLTIS,TRC,E,RI,FRZ,OT,OTZ,TIME゙, [IMZ,FTIMF,CULO,CINC,OUNI, NOU 3
    2\triangleLPH, ELN, DLP,EF,EPEF,RHO,RHR,FIEF,FZW,FIW,CFTR,CFTT,CKON,TMAX
    3TMAX2,CPE, CPD, VNIX, TGATE,EXM,EYM,RFM,QEMI,OOOO,RRR,QRR2, SP,EZN
    &EZP,EIN,XI,YII,YZI,AL,RBI,RTR,CCIC,CGFS,BICPD,BZCPP,CZFRI,CZEL,
    CIMMMON IM,JML JM, IMI2,JMIR,IS,JM2T,JMY,NTMZ,NNNOKK,KKM, IIX
    LNSE,NCTZ,NCJ,NVCNX,IVK,MAX,IC,JC,ICZ,JCT,JJEZ.MPC,NTM,NIJIT,NOUT?
    LNSE,NCTZ,NCJ,NVCNX,IVK,MAX,IC,JC,IC2,JCR.JJEZ,MPC,NTM,NISIT,NOUT?,
    ZNSTP,NT,NOFF,NSTT,MNAX,LYC,MFIRS,NITI,NITZ,NCLCS, MCLCS,NRUN,NDINNT
    3NB2
    NTIME=0
    INC=UT
    TT=TMAX
    HOCCCN1
    TVEN=DNEW(IK.,JC)
    F!P=(ONEW(IC,I I-ONEW(IC,JMT)I/YNI +DNEW(IC,JMT)
    F!P=(ONEW(IC,I,ONEW(IC,
1405 P:IF=TAFH/FIP
    PI=ABS((TOLD-TNEW)/TNEW)
    DU 1493 LH1=1,MPC
    If (PI-P[C(LH1)] 1493,1493.1494
1403 CIDNTINUE
    LHl=MDC
    IINC=TM(LHI)*TTT
    WHITE (3,1642) FIP,POF,PI,TINC
501 1F (NTIME) 1505.1505.1510
    OT=TINC
    NTNME=1
    TTNETMAZ
    THLU=CCP?
    TNEW=DDEW(IC2.JCZ2)
    OJ=(OPEW(1C2,JMZT1-OPEW(IC2+1))/YN2
    FIP=UPEW(IC2,I)+UO-FBC*EYIJ(IC2,JMM2T)*DPEW(ICZ,JM2T)/CJMP
    G! TO 1400
    DT2=TINC
    F(0T-DT2) 1511.2512,1513
    TNTM=UT2/OT+1.OE-02
    NTMP=
    NTM=1NT(TNTM)
    DT2=NTM*DT
    GOTO 1516
512
    NT42=
    GO TO 1516
513 TNTM2*DT/DT2+1.0E-02
    NTM=1
    NTMZ*INTITNTMZI
    UT=NTM2*DT2
```



```
    1E14.6)
```


[^3]

[^0]:
 $12 \quad$ CGES=TCC
 is CTUR=CGES*REX
 Gก TO 16
 :- $\quad \angle C U R=T C C \neq R E X$
 BIDR=UB+TCC2
 QUE $=$ rec 2
 [F (6 1) 7,7,6
 OUBL=TCC $2+8 I$
 MMAX=O
 NFIRS $=-1$
 COR=E-CCDR
 DU 65 MMEI IMAX
 $V E(N I X)=D U M Y+1.00+00$
 TTUP = UEXP (DU* VE (NIXI)-1, OD + CO
 TEMP (NIX) $=$ TTOP \ddagger BN (NIX)
 GEMI $=$ ONEW $(N I X, 1) /(B L P(N I X)$ +DNEW $(N I X, 1))+1.0$
 ELC(NIX)=(TEMP(NIX)-DNEW(NIX+2I) *CJMI \#GEM1
 CC((NIX) \#TEMP (NIX)*CMI /BN(NIX)
 CEIC= (IVE(NIX)-VT(NIX))/OREAL)*CEMI(NIX)\#AR:
 EIDC=(CABS (EIC(NIX))+CCC(NIX))/ARI
 IF (EIDC-CLERI) 205,206,206
 -ICD=DSORT(CZERI \#EIDC)
 FIRCx (TICD-EIDC) \& AR!
 GO 10207
 E IRC $=0.00+00$
 $\operatorname{CCC}(N I X)=C C C(N I X)+E I R C$
 CCJI $=0.0$
 $C C J I=0.0$
 $C O M B=0.0$
 $00 B 1=0.0$
 CEIFF=CCC(NIX)
 GIK=OE-CFIEF-CEIC
 DO $23 \quad I=N I X, I M$
 VC(I)=EY(!)+DCCR-VE(NIX)-CJV(I)
 If (NC.J) 9,9,8
 H TTOP=DEXP\{-OU\#VC(I) -1. $00+00$
 TUP(I)=BP(I)*TTOP
 TON(I)=BN(I)\#TTPD
 TCJ2(1)=(UPEW(I,2)-TOP(I))*C.JM2
 TCJII)=(DNEW(I.JMI)-TDN(I))*CJM1
 TT3=(IVCT(I)-VC(I))/DREAL) \#CCJ(I)\#ARI
 $K C B=T F M P(!) * O Z / T N I(I)+T E F F(I)$
 $C O M P=P C B+C D M B$
 rTI = (TEMP (I)-ONEW(I.1) +BULKI (I))*022
 $D O B 1=T T 1+U O B 1$
 $G I R=G[R-T T I-T T 3+T C J 2 I I)-R C B$
 UO $20 L 1=2$, NIX
 $1=N[X+1-21$
 $V E(I)=-R B(1)=R 21 \neq G I P+V E(I+1)$
 if ivEII) $26,25,25$
 $V C(I)=E Y(1)+D C[R-V F(I)-C J V(I)$
 If (VE(I)-1.00+00) 22.22.21
 IFRFIRS) 27,28.28
 UIJMY $=1.20+00$ DUMY
 $V E(N I X)=D U M Y+1.00+00$
 WRITE $(3,1500)$ DUMY, VE (NIX)
 IF (NCJ) 65,65,4
 4, IF (MM-1) 65.65,
 4 $C D I F=-0.1 E+01$

[^1]: GU TO 120
 NFIRS=1
 CHIP $=0.50+00$
 DINC $=C H I P *$ DINC
 DINC=CHIP*DINC
 DUMY V CUMY- DABS (DINC)
 $\mathrm{V} \in(\mathrm{NI} X)=0 U M Y+1.00+00$ GO TO ES
 TTOP= DEXP (OU*VE(I))-1.00+00
 TEMP(I)ETTOP*BN(I)
 CCC(I) =TTDP*CM1
 if (NCJ! 81.81.80
 TTDP=DEXP(-DU*VC(I))-1.00+00
 TDP(I)=8P(t)*TZDP
 TCJ2(1) $=(0 \mathrm{PEW}(\mathrm{I}, 2)-$ TOP(I))*CJM2
 TCJ(I) $=\left(\right.$ ONEN $^{(1, J M 1)-T D N(I)) * C J M I ~}$
 GEMI=DNFW(I,II/BLP(I) + DNEW(I, 1) $1+1.0$
 B1 GEGI=DNFW(1, \quad EIC(I)=TTEMP(I)-DNEW(I,2))*CJMI*GEMI
 r CALCULATE CURRENT FLOM TO SUPDLY JGT RECOMRINATIIN
 EIOC=(CABS (EIC(I))+CCC(I))/ARI
 ElOC=(CABS (E1C(II)+CCC (I))/AR
 IF (EICC-CZER1) 200,201,201
 TVCD=ASTCD-E10CI*AR1
 IRC=(TICD-E10C)*AP1
 G: TO 202
 小) EIRC=0. $2 \mathrm{O}+00$
 3) LCC(I) $\mathrm{CCCC}(I)+E I R C$
 $\mathrm{CEIEF}=\mathrm{CCC}(1)+\mathrm{CEIEF}$
 TTI = (IEMP (I)-DNEW(I.1) +BULKL(I))*OZZ
 UUB1=TT1+0CB1
 TT2 =((VE (I)-VT(!) I/DREAL)*CEMI(1)*ARI
 $C E 1 C=T T 2+C E 1 C$
 TT3 $=(1 \mathrm{VCT}(1)-\mathrm{VC}(1)) / O R E A L) * C C J(1) * A R 1$
 CCJI $=$ TT3 C CJI
 KCB=TEMP(I)*OZ/TNL(I)+TEFF(I)
 CCMB= RCB+COMB
 GIR=GIP+TCJ2(I)-TTI-TT2-TT3-CCC(I)-RCB
 cuntinue
 IF(IVK) 35,35,30
 GOIF=VNIX-VE(NIX)
 GU TO 15
 GDIF=GIP
 [F ($1-1$) $10,10,15$
 IF (DABSIGDIF)-BICH*OURI) $48,48,15$
 IF (NFIRS) 52,54,54
 NFIRS $=0$
 CHIP $=1.00+00$
 ! F (GOIF) 53,63.56
 CHIP $=-1.00+00$
 60 TO 56
 IF(GOKO*GDIF) $57,55,55$
 IF(NFIRS) $50,56,60$
 UINC=CP2*DABS (LUMY)
 GO TO 60
 CHIP $=0.50+00$
 OINC $=-\mathrm{OINC}$
 IF (DABS (OINC)-0.10-14moumy) 48,51,51
 $51 \quad$ OINC=CHIP*OINC
 GORO=GDIF
 OUMY $=$ OUMY OINC
 VE(NIX) $=D U M Y+1.00+00$

[^2]: 1157 ONEW(l.J)=R(J)\&DNEW(!,J+1)+2(J)
 C ENO OF Y-ITERATION FOR BASE 1 start of x-iteration for base 1 $001190 \mathrm{JFl}, \mathrm{JML}$
 $L 1=L C 11 J)$
 L2=LC2(J)
 $J L=J-1$
 JT=J+2
 (1) $1=1 \times 1$?

 1LOL G(I)=UNEW(I,J)/(AIP(t) +DNEW(T,J) +1.0
 DO 1175 1=L1.L2
 il=t-1
 $1 T=1+1$
 $A(1)=0.0$
 $A(I)=0.0$
 $B(I)=0.0$
 $\begin{array}{ll}B(I) & =0.0 \\ C(I) & 0.0\end{array}$
 $C(1)=0.0$
 $H(1)=0.0$
 1B4=181(1, J)
 G0 Tn (301, 301,301,304,304,306,307,307,310,310,310),1HB
 (TI)=7.0*G(1)\#Y(IX
 OO2=G(1)*XOY
 203=0C?
 B(I) $=C(1)+$ FMM2 $2+$ NN $2+53+S 3$
 Gu TO 305
 $A(t)=2.0 * G(t)=$ Yax
 $0122=\mathrm{G}(1)=\mathrm{XOY}$
 $0122=6(11$
 Q03 $=002$,
 B(1)=A(I)+EMM2+ENN2+S3+S3
 OHS $=002+003-F \mathrm{Mm}^{2}$

 G0 TO 1175
 $30 \mathrm{~A} \quad \mathrm{Alll}=\mathrm{G}(1) * \mathrm{YOX}$
 Q03 =G(1)*xCY
 A(I) $=A(I)+E M M I+E N N I+S 3$
 OU4 1 WH3-EMMI + S2
 H(I)=-004*ONEW(1,J)+003*ONEW(I,.JTI
 GU TO 1175
 307 A(l)=G(I)*Yax
 $043=2$ - O*G(1)*x0Y
 $C(I)=A(1)$
 H(I) $=A(I)+C(I)+F$ MMZ +ENN?
 OUGEOUS-EMM2
 HItI=-1204*DNEW(I.J) +003*DNFW(I.JTI
 IF (I BB-7) 1175,1175.1171
 117! H(1)=A:I)\#DNLW(IL.J)+H(I)
 H(1)=A:177
 GO TO 1175
 $31 n \quad A(1)=2.0 * G(1) * Y U X$
 UG2=2.O*G(1)*xOY
 $042=2.0 \%$
 $003=102$
 $003=1)=A(1)$
 $C(I)$
 $C(I)=A(I)$
 $B(I)=A(I)+C(I)+$ FMM3 + FNN 3
 $0 C 4=0 C 2+O Q 3-E M N$?

 1175
 CIJNTIRUF
 $K 2=L 1+1$
 $40=1.0 / B(L 1)$
 $R(L I)=C(L 1) * 0 G$
 Q02 $=0.0$
 2(L!)=00暗 (Ll)
 on $1176 \mathrm{~K}=\mathrm{K2}$. $\mathrm{L2}$

[^3]:
 $\begin{array}{llllllllllll}0 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 4 \\ 0 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 4\end{array}$
 $\begin{array}{lllllllll}10 & 10 & 1 & 1 & 10 & 10 & 10 & 10 & 4\end{array}$ $\begin{array}{lllllllll}10 & 10 & 10 & 10 & 10 & 10 & 10 \\ 0 & 10 & 10 & 10 & 10 & 10 & 10 & 10\end{array}$
 1010101010101010 11111111111111
 [NO lif INPUT GATA SEASEO

